论文部分内容阅读
提出了1种组合神经网络结构的车牌汉字识别方法,主要从特征选取和分类器设计2方面研究车牌汉字字符识别,识别系统由2层神经网络组成,应用FCM算法对汉字进行粗聚类,聚类结果作为后续网络的先验知识,产生网络训练目标,采用LVQ网络进行粗分类,通过BP网络进行细分类。该种分层结构缩减了待识别模式的搜索范围,克服了传统单层识别系统识别率不高和组合网络粗分类率低的缺点。实验结果显示,本方法的识别率高,识别效率较好。