论文部分内容阅读
针对现有的混凝土裂缝检测算法在各种复杂环境中检测精度不够、鲁棒性不强的问题,根据深度学习理论和U-net模型,提出一种全U型网络的裂缝检测算法。首先,依照原U-net模型路线构建网络;然后,在每个池化层后都进行一次上采样,恢复其在池化层之前的特征图规格,并将其与池化之前的卷积层进行融合,将融合之后的特征图作为新的融合层与原U-net网络上采样之后的网络层进行融合;最后,为了验证算法的有效性,在测试集中进行实验。结果表明,所提算法的平均精确率可达到83.48%,召回率为85.08%,F1为84.11%