论文部分内容阅读
为提高朴素贝叶斯分类器的分类性能,考虑决策分类过程中条件属性的不同重要程度,提出了一种基于特征选择权重的贝叶斯分类算法。采用卡方值和文档频数相结合的数值来表示特征词的重要程度,对该值进行处理获得每个特征词权重,建立加权贝叶斯分类器。在研究维文特点的基础上,利用该算法构建了一个维文文本分类模型。在搜集到的维文语料库上进行的实验结果表明,该算法比朴素贝叶斯拥有更好的分类性能。