论文部分内容阅读
视觉图像检测在机器视觉领域有着重要的研究意义和应用价值。近年来,卷积神经网络的发展带动了视觉图像检测领域的进步。大量新理论、新方法被应用于卷积神经网络,提高了网络对特征的表达能力,降低了网络的复杂性,增强了网络的性能。研究阐述了卷积神经网络的基本构成,从卷积层,池化层,激活函数,网络正则化和网络优化等方面总结了卷积神经网络近年来的改进方法,梳理了卷积神经网络在视觉图像检测领域的应用,总结了卷积神经网络在视觉图像检测领域的优点,并展望了未来的研究方向。