论文部分内容阅读
传统的独立成分分析(IndependentComponentAnalysis,ICA)是一种无噪声模型,而实际应用中噪声是存在的。根据多元统计中的因子分析模型,改变其假设条件,从而得到一种有噪声ICA模型,对于模型参数,引入平均场近似(MeanFieldApproximation,MFA)原理来求解。针对图像特征提取,通过增加对模型参数的一些限制,使其能得到更为独立的图像特征,为图像识别提供更可靠的特征信息,从而大大提高识别率。通过仿真模拟图形以及ORL人脸数据进行实验,将传统的独立成分分析算法、无