【摘 要】
:
为了研究离子推力器输入参数对工作性能的影响,采用试验研究和理论分析的方法研究了离子推力器加速电压和阳极流率对离子推力器性能的影响.研究结果表明:一定范围内离子束流随着加速电压绝对值的减小不断减小,然后突然增大,大、小推力模式下的电子返流极限电压分别为-140 V和-115 V,放电电压、放电损耗随阳极流率减小单调增大,减速电流单调减小,通过调节阳极电流、栅间电压、工质气体流量,功率为300-4850 W下,推力为11-188 mN,比冲为1800-3567 s,效率为34%-67%,在3000 W时推力器
【机 构】
:
兰州理工大学机电工程学院,兰州 730050;兰州空间技术物理研究所,真空技术与物理重点实验室,兰州 730000;兰州理工大学机电工程学院,兰州 730050;兰州空间技术物理研究所,真空技术与物理
论文部分内容阅读
为了研究离子推力器输入参数对工作性能的影响,采用试验研究和理论分析的方法研究了离子推力器加速电压和阳极流率对离子推力器性能的影响.研究结果表明:一定范围内离子束流随着加速电压绝对值的减小不断减小,然后突然增大,大、小推力模式下的电子返流极限电压分别为-140 V和-115 V,放电电压、放电损耗随阳极流率减小单调增大,减速电流单调减小,通过调节阳极电流、栅间电压、工质气体流量,功率为300-4850 W下,推力为11-188 mN,比冲为1800-3567 s,效率为34%-67%,在3000 W时推力器最高效率达到67%,该转折点对推力器设计和应用有关键意义,应用要结合在轨任务剖面选择合理的工作参数区间.
其他文献
我们提出了二维自相似变换理论,以聚焦的(2+1)维NLS方程(数学称为抛物型的非线性微分方程)为模型,构建了它被转变为聚焦的(1+1)维NLS方程的二维自相似变换,深入研究了它的空间怪波激发,发现除了(1+1)维NLS方程的Peregrine孤子、高阶怪波和多怪波诱导的线怪波所具有的短寿命特征外,由Akhmediev呼吸子(AB)和Kuznetsov-Ma孤子(KMS)诱导的线怪波也具有这种短寿命特征.这与由亮孤子(包括多孤子)诱导的空间相干结构保持形状和幅值不变的演化特征完全不同.通过图示展现了本文例举
利用微环谐振腔阵列进行光码分多址编解码过程中,微环谐振腔反射谱的自由频谱宽度(FSR)范围制约该系统用户容量的提升.本文提出了一种新型的基于游标效应的串联哑铃型微环谐振腔光编解码器.利用Matlab建立了半径分别为40 μm-30 μm-40 μm的哑铃型微环谐振腔光编解码器模型.详细分析了光反射谱伪模抑制与耦合系数的关系,研究了耦合系数、码片速率对串联哑铃型微环谐振腔光编解码器性能的影响.结果表明,与半径分别为40 μm-40 μm-40 μm的传统串联微环谐振腔编解码器相比,哑铃型微腔编解码器FSR值
基于衍射原理和模耦合理论,提出了一种由亚波长介质光栅/金属-电介质-金属(metal-dielectric-metal,MDM)波导/周期性光子晶体组成的复合微纳结构.结合反射角谱深入分析了表面等离子激元的传输特性以及在固定波长下不同入射角时刻形成的双重Fano共振的产生机理.研究表明,双重Fano共振是由在亚波长介质光栅/MDM波导结合的上层结构中产生的独立可调的双离散态分别与在周期性光子晶体中形成的连续态相互耦合形成的.接着定量讨论了结构参数对双重Fano特性的影响,探究了双重Fano共振的演变规律.
大口径超高峰值功率激光的时空耦合(spatiotemporal couplings,STCs)畸变会严重影响焦斑的功率密度,为了准确预测远场处的光场分布、补偿STCs畸变以提升远场的峰值功率密度,亟须一种有效的时空耦合特性的单次测量方法.本文提出了一种基于空谱干涉和频域分割的超快激光时空耦合特性测量方法,对该测量方法的基本原理与实现方式进行了详细的阐述,并对其进行了模拟计算与分析,模拟结果表明该测量方法能够精确表征超短脉冲激光的时空耦合特性.
本文设计了一种双层开口方环和双C型结构的超材料结构,在太赫兹波段具有双波段的类电磁诱导透明效应.该结构在1.438 THz和1.699 THz处出现透射峰.通过电磁场分布分析讨论产生双频带电磁诱导透明的原因,利用等效电路分析方法进一步解释了超材料中的类电磁诱导透明效应.研究了超材料开口方环的开口大小和双C型结构距离以及改变入射角度时对透射窗口的影响,结果发现在改变入射角度时,所设计材料透射谱线变化较大,表现出对角度的高敏感性.同时,改变环境的介电常数可以得到该结构的透射谱产生明显的红移.以上研究结果表明该
模式不稳定效应和非线性效应已经成为高功率光纤激光器中限制输出功率和光束质量进一步提升的主要障碍.采用改进的化学气相沉积工艺结合溶液掺杂技术制备25/400μm的M型掺镱双包层光纤,纤芯和中间凹陷区域的数值孔径分别为0.054和0.025.基于该光纤搭建976 nm双向泵浦全光纤结构放大器.在泵浦光功率为3283 W时,获得2285 W中心波长为1080 nm的激光输出,3 dB线宽为3.01 nm,测量的光束质量因子为1.42,且未出现受激拉曼散射现象.这是目前基于M型掺镱光纤实现的最高输出功率,通过优化
利用新提出的Gilmore-NASG模型,在考虑液体可压缩效应的边界条件下,研究了可压缩液体中气泡的声空化特性,并与利用原有KM-VdW模型计算得到的结果进行了比较.结果表明,相比于KM-VdW模型,由于Gilmore-NASG模型采用新的状态方程来描述气体、液体以及由可压缩性引起的液体密度变化及声速变化,所以用Gilmore-NASG模型得到的空化气泡的压缩比更大、崩溃深度更深、温度和压力峰值更高.随着驱动声压幅值的增大,两种模型给出的结果差别愈加明显,而随着驱动频率的增大,两种模型给出的结果差别逐渐减
空间技术等高新领域对智能高效的热控制技术的需求日益提高,而实现智能热控制技术的关键是要实现材料的热物性智能调控,于是热导率可响应外场变化的热智能材料成为了研究的焦点.本文梳理了热智能材料的最新研究进展,从调控机理、调控幅度、应用价值等角度出发,介绍了纳米颗粒悬浮液、相变材料、软物质材料、受电化学调控的层状材料和受特定外场调控的材料等不同种类热智能材料的研究现状,以及以热智能材料为基础的智能热控部件在空间技术等领域的应用.最后,本文对热智能材料未来的研究方向进行了探讨.
构建核壳结构可有效降低材料的表面缺陷及实现掺杂离子的可控区域分布,已成为目前增强及调控材料发光特性的有效手段之一.为此,本文以外延生长技术,构建了一系列NaLnF4(Ln=Y,Yb,Ho)@NaLnF4(Ln=Y,Yb)核壳微米结构,并实现了Ho3+离子上转换发光的增强及可控调节.借助共聚焦显微光谱测试系统,在980 nm近红外激光激发下,研究Ho3+离子在不同单颗粒核壳结构中的上转换发光特性.结果表明,当包覆NaYF4惰性壳时,NaYF4:Yb3+/Ho3+及NaYbF4:Ho3+微米棒的上转换发射强度
为研究圆柱曲面的单光子量子雷达散射截面与经典雷达散射截面相比存在的具体优势,引入光子波函数,将引起量子干涉的距离矢量进行分解,通过圆柱曲面的曲面积分推导得到了单基地单光子下的圆柱曲面量子雷达散射截面的封闭表达式.分析了不同电尺寸的圆柱曲面长度和曲率半径的影响,对比了圆柱曲面量子雷达散射截面与经典雷达散射截面的封闭表达式.封闭表达式的分析和仿真结果都表明,圆柱曲面长度的电尺寸决定量子雷达散射截面的旁瓣数,曲率半径的电尺寸决定了量子雷达散射截面曲线的包络,量子雷达散射截面的整体强度与曲率半径的电尺寸呈线性关系