论文部分内容阅读
针对图像美感度分类中出现的准确率低、美感特征描述差等问题,提出了一种基于深层卷积神经网络的图像美感度分类算法.首先将图片输入55层卷积神经网络自动学习并获得更加细致和深层次的美感特征,然后通过softmax分类器进行图像美感度分类,从而得到最优的分类结果.将该算法与多种传统算法和浅层深度卷积神经网络的算法进行对比实验,结果表明该算法在A1和A0数据库的准确率分别达到80.13%和87.32%,且在CUHKPQ数据库的6种场景下,获得了更好的分类准确率.