论文部分内容阅读
针对相关算法在挖掘数据流最大频繁项集时所存在的问题,提出了一种基于向量的数据流滑动窗口中最大频繁项集挖掘算法。该算法首先用向量作为概要数据结构,采用定量更新滑动窗口策略解决时间粒度问题;其次通过位运算产生频繁项集,利用矩阵和数组存储辅助信息,深度优先搜索产生最大频繁项集时利用剪枝策略进一步减少挖掘时间;最后用索引链表存储挖掘结果以提高超集检测效率。理论分析和实验结果验证了该算法的有效性。