论文部分内容阅读
A novel weft insertion mechanism named eccentric conjugate non-circular gear & crank-rocker & gears train weft insertion mechanism was proposed in order to better meet the requirements of rapier loom’s weft insertion mechanism as well as reduce the manufacturing difficulty. Meanwhile, based on the working principle of this mechanism, kinematical mathematic models of this mechanism were established and an aided analysis and simulation software was compiled. The influences of eccentricity ratio, deformation coefficient, and other important parameters on the kinematics characteristics of this mechanism were analyzed by using the software. A group of preferable parameters which could meet the requirements of weft insertion technology were obtained by means of human-computer interactive optimization method. The maximum velocity, maximum acceleration, and variation of acceleration of this mechanism are smaller than those of the conjugate cam weft insertion mechanism applied on TT96 rapier loom under the conditions of the same unilateral total stroke of rapier head and the same rotary speed of loom spindle; meanwhile the other demands of weaving technology can be met by this novel weft insertion mechanism.
A novel weft insertion mechanism named eccentric conjugate non-circular gear & crank-rocker & gears train weft insertion mechanism was proposed in order to better meet the requirements of rapier loom’s weft insertion mechanism as well as reduce the manufacturing difficulty. Meanwhile, based on the working principle of this mechanism, kinematical mathematic models of this mechanism were established and an aided analysis and simulation software was compiled. The influences of eccentricity ratio, deformation coefficient, and other important parameters on the kinematics characteristics of this mechanism were analyzed by using the software . A group of optimum parameters which could meet the requirements of weft insertion technology were obtained by means of human-computer interactive optimization method. The maximum velocity, maximum acceleration, and variation of acceleration of this mechanism are smaller than those of the conjugate cam weft insertion mechanism applied on TT96 rapier lo om under the conditions of the same unilateral total stroke of rapier head and the same rotary speed of loom spindle; meanwhile the other demands of weaving technology can be met by this novel weft insertion mechanism.