论文部分内容阅读
针对传统图像去噪算法多噪声去除难,深层卷积神经网络去噪模型网络复杂、训练时间长等问题,提出一种基于自编码器结构的双分支改良编解码网络,实现高效图像去噪。双分支结构之一采用降-升采样实现点噪声消除,另一分支专注于宏观的图像修复和伪像去除,后端利用残差结构进行整合,实现数字图像混合噪声去噪。实验结果显示:对于含有标准差为15,均值为0的高斯噪声、噪声密度为5%的椒盐噪声和散粒噪声的混合噪声图像测试集,实验去噪效果相较于输入混合噪声图像峰值信噪比,平均提升了5.3%。与12层全卷积神经网络相比,去噪效果相