论文部分内容阅读
采用ARIMA模型将数控机床主轴故障初期的非平稳时间序列转化成标准平稳时间序列,然后利用多维自回归(AR)模型进行数据处理与趋势预测,并分析了基于多维自回归序列参数估计的Yule-Walker算法以及FPE阶次判定准则.实测数据的计算结果表明:经稳态处理后的多维AR时序模型能够很好地拟合数控机床主轴故障模型,预测的精度符合要求.