论文部分内容阅读
为了提高Boosting回归算法的稳定性,提出了动态加权的组合Boosting回归算法,即DA-Boosting算法。首先以BP神经网络作为弱学习器,再调用Boosting回归算法构造强学习器,最后以强学习器得到的回归函数作为子函数进行动态加权平均,得到最终的组合函数。几个经典的分析回归数据集的测试表明,该算法不但具有良好的泛化能力,而且泛化性能稳定。最后将DA-Boosting算法用于丙烯软测量建模,应用结果表明该软测量模型泛化性能好,测量精度高。