论文部分内容阅读
目的探讨高分子聚合物是否能逆转或减轻血浆诱导的肺表面活性物质(PS)失活。方法应用闭泡式表面张力仪分别测定高分子聚合物葡聚糖(Dextran)、聚乙二醇(PEG)和透明质酸(HA)、PS及加入了1%~3%血浆的混合物的最大表面张力(γmax)和最小表面张力(γmin),并计算其稳定系数(S.I.)。结果不同的高分子聚合物、血浆及其混合物的γmin均大于10 mN-m,S.I.小于0.8。PS(0.84 g·L-1)的γmin及S.I.分别是(1.78±0.03)mN-m和1.71±0.01。当PS与1%、2%、3%血浆混合后,其混合物的γmin分别上升为(21.96±0.15)mN-m,(22.31±0.34)mN-m和(28.02±1.36)mN-m;S.I.下降为0.14±0.03,0.12±0.01和0·36±0·03;再加入5%PEG,5%Dextran或0.25%HA后,其γmin分别下降为(1.60±0.04)mN-m,(1.35±0.06)mN-m,(18.66±0·73)mN-m;(1.13±0.01)mN-m,(1.28±0.01)mN-m,(16.68±0.31)mN-m和(1.16±0.01)mN-m,(1.22±0.01)mN-m,(1.23±0·01)mN-m。S.I.分别为1.76±0.01,1.77±0.01,0.31±0.03;1.82±0.01,1.80±0.00,0.46±0.03和1.82±0.01,1.81±0.00,1.81±0.01。PEG(0%、2.5%、5.0%、10.0%)+PS+血浆(2%)组γmin分别为(22.32±0.34)mN-m,(1.09±0.01)mN-m,(1.35±0.06)mN-m,(0.96±0.02)mN-m;Dextran(0%、2.5%、5.0%、10.0%)+PS+血浆组γmin分别为(22.32±0.34)mN-m,(2.03±0·04)mN-m,(1.28±0.01)mN-m,(1.10±0.09)mN-m;HA(0%、0.125%、0.250%、0.500%)+PS+血浆组γmin分别为(22.32±0·34)mN-m,(9.60±0.20)mN-m,(1.22±0.01)mN-m,(0.92±0.01)mN-m。结论在体外实验中,国产PS具有很好的表面活性;高分子聚合物(PEG、Dextran、HA)可以逆转血浆引起的PS失活;与PEG和Dextran比较,HA和PS混合,对抗血浆引起的PS失活效果更好。
Objective To investigate whether macromolecular polymers can reverse or reduce plasma induced pulmonary surfactant (PS) inactivation. Methods The closed cell surface tension meter was used to determine the maximum of the mixture of dextran, polyethylene glycol (PEG) and hyaluronic acid (HA), PS and plasma with addition of 1% ~ 3% Surface tension (γmax) and minimum surface tension (γmin), and calculate the stability factor (SI). The results of different polymers, plasma and their mixtures γmin greater than 10 mN-m, S.I. less than 0.8. The γmin and S.I. of PS (0.84 g · L-1) were (1.78 ± 0.03) mN-m and 1.71 ± 0.01, respectively. When PS was mixed with 1%, 2% and 3% plasma, the γmin of the mixture increased to (21.96 ± 0.15) mN-m, (22.31 ± 0.34) mN-m and (28.02 ± 1.36) mN- (1.60 ± 0.04) mN-m, (1.35 ± 0.35) m ^ (-1), respectively, after adding 5% PEG, 5% Dextran or 0.25% HA, decreased to 0.14 ± 0.03, 0.12 ± 0.01 and 0.36 ± 0.30, (1.16 ± 0.31) mN-m, (1.16 ± 0.01) mN-m, (1.16 ± 0.01) mN-m, -m, (1.22 ± 0.01) mN-m, (1.23 ± 0.01 ×) mN-m. S.I. were 1.76 ± 0.01, 1.77 ± 0.01, 0.31 ± 0.03; 1.82 ± 0.01, 1.80 ± 0.00, 0.46 ± 0.03 and 1.82 ± 0.01, 1.81 ± 0.00, 1.81 ± 0.01, respectively. Γmin were (22.32 ± 0.34) mN-m, (1.09 ± 0.01) mN-m and (1.35 ± 0.06) mN-m in the group of PEG (0%, 2.5%, 5.0%, 10.0% (0.96 ± 0.02) mN-m, (22.32 ± 0.34) mN-m and (2.03 ± 0.40) mN-m respectively in Dextran group (0%, 2.5%, 5.0%, 10.0% (1.28 ± 0.01) mN-m and (1.10 ± 0.09) mN-m, respectively. The mean plasma concentrations of HA in group PS + plasma were (22.32 ± 0.34) mN- m, (9.60 ± 0.20) mN-m, (1.22 ± 0.01) mN-m, (0.92 ± 0.01) mN-m. CONCLUSIONS: In vivo experiments showed that domestic PS possesses a good surface activity. Polymer-based polymers (PEG, Dextran, HA) can reverse plasma-induced PS inactivation. Compared with PEG and Dextran, HA and PS are mixed against plasma-induced PS deactivation better.