【摘 要】
:
社交网络的影响力最大化是网络分析领域的关键问题,在广告宣传、舆情控制等场景有着诸多应用.该问题指在一个社交图中选取一组源节点,使得所选取的节点集合能够在某种传播模型中形成最大的影响力.由于节点选取问题是典型的NP-hard问题,在大型网络中会遭遇组合爆炸.近些年来,国内外学者一般采用启发式算法求得问题的近似解.然而,现有工作鲜有考虑到节点选取的成本,所得到的解无法满足实际应用中的预算条件.针对此问题,首先考虑节点选取的成本约束,并对成本受限条件下的社交网络影响最大化问题进行数学建模;其次为节约源节点的冗余
【机 构】
:
华南理工大学计算机科学与工程学院 广州 510006
论文部分内容阅读
社交网络的影响力最大化是网络分析领域的关键问题,在广告宣传、舆情控制等场景有着诸多应用.该问题指在一个社交图中选取一组源节点,使得所选取的节点集合能够在某种传播模型中形成最大的影响力.由于节点选取问题是典型的NP-hard问题,在大型网络中会遭遇组合爆炸.近些年来,国内外学者一般采用启发式算法求得问题的近似解.然而,现有工作鲜有考虑到节点选取的成本,所得到的解无法满足实际应用中的预算条件.针对此问题,首先考虑节点选取的成本约束,并对成本受限条件下的社交网络影响最大化问题进行数学建模;其次为节约源节点的冗余覆盖成本,使用快速贪婪模块度最大化算法对网络进行社区聚类;然后根据社区聚类结果在蚂蚁游走过程中引入跨社区游走因子,以增强蚂蚁在网络上的全局游走能力;最后,在蚁群系统中设计了新的启发式信息和信息素形式,并将评估函数设计为罚函数的形式以控制节点的选取成本,提出了基于社区发现的蚁群系统算法(Community Detection-based Ant Colony System,CDACS).在真实数据集上的实验结果表明,CDACS算法比未加入跨社区因子的蚁群算法取得的覆盖率平均提高了15%左右,运行时间平均减少了约20%.在覆盖效果上相比其他现有的影响力最大化算法都取得了显著的改进.此外,CDACS在不同数据集上所产生的解均满足不同的成本限制,体现了CDACS算法在成本控制上的可靠性.
其他文献
链路预测是网络科学的一个重要研究分支,旨在推断网络中节点对间存在连边的可能性.现实生活中很多事物关系都能够通过网络科学进行描述,很多实际问题都可以转化为链路预测问题.节点无特征网络链路预测算法可向有向网络、加权网络、时序网络等更复杂的网络推广.但现有的链路预测算法面临着网络结构信息挖掘不够深入、特征提取过程受人为主观意识影响、算法很难迁移到其他网络中、算法复杂度过高而无法在大型真实工业网络中应用等诸多问题.针对上述问题,文中基于图注意力网络的基本结构,采用图嵌入表示技术采集节点特征,类比神经图灵机中的内存
随着人机交互在计算机辅助领域的快速发展,脑电信号已成为情绪识别的主要手段.与此同时,图网络因其对拓扑结构数据的优秀表征能力,逐渐受到研究者们的广泛关注.为进一步提升图网络对多通道脑电信号的表征性能,文中结合脑电信号的稀疏性、不频繁性等多种特性,提出了一种基于时空自适应图卷积神经网络的脑电情绪识别方法(Self-Adaptive Brain Graph Convolutional Network with Spatiotemporal Attention,SABGCN-ST).该方法通过引入时空注意力机制解
随着网络技术的飞速发展,IPv4网络已远远不能够满足用户的需求,因此,IPv6网络技术的投入使用变得越来越广泛.而对于在校园网中IPv6网络运用最多的是用户的认证系统,这种方法解决了 IPv4网络的地址空间的短缺及安全方面的问题[J].通过介绍IPv6与IPv4网络认证之间的比较,简要分析了两者的利弊,并探讨了改进的思路方法.
针对关系型网络的社区发现问题,考虑节点间相互作用的强弱程度和信息渗流机理,创新性地提出了一种基于边权重和连通分支(Edge Weight and Connected Component,EWCC)的社区发现算法.为了验证算法的有效性,首先,构建了5种具有相互作用的双层网络模型,通过分析层间节点作用的强弱程度对网络拓扑结构的影响,确定了5种双层网络模型下生成的30个数据集;其次,选用真实数据集分别与GN算法和KL算法在模块度、算法复杂度和社区划分数目评价准则上进行了对比,实验结果表明EWCC算法的准确性较高
政务大数据是新时期数字政府建设的核心资产,对推动政府功能服务升级和经济、社会创新发展具有重要意义.但在复杂的网络流通环境下,为了保障政务大数据的合理、有序和可靠利用,其数据安全防护能力建设不容忽视.在技术层面,政务大数据安全防护涉及网络安全(Network Security)、平台安全(Platform Security)和应用安全(Application Security)等核心要素;在管理层面,政务大数据安全防护则需要重点关注人员素养(Personnel Quality)和制度质量(Instituti
在众包平台上,不同类型的用户在参与意愿、工作动机、业务能力等方面具有多样性和差异性的特征,在平台上产生的价值也不同.基于用户价值度量对用户进行细分,是更好地洞察用户价值和需求、对用户进行个性化和精细化管理的关键.同时,选择众包用户价值衡量维度也是目前需要解决的问题.因此,该研究首先基于RFM模型并结合众包平台及众包用户的特性,将用户信用纳入用户价值模型,提出并构建了众包用户价值衡量模型RFMC(Recency,Frequency,Monetary,Credit);然后,结合“一品威客”平台获取所需的实验数
现在由于互联网的广泛应用和迅猛发展,Web应用的使用越来越广泛,面临的问题就是攻击者可以使用SQL注入漏洞获取到服务器的库名、表名、字段名,进而来盗取数据库中用户名和密码等数据.攻击者通过非法手段来获取数据库的权限,可以对Web应用程序进行删改等操作.SQL注入漏洞使Web应用程序安全存在巨大的安全隐患,对整个数据库也有严重的影响.
为了提高集群网络中全序数据传输性能,本文提出了一种新颖的传输框架——TOC,该框架由TOC-RE策略和TOC-Re策略两部分组成.首先,提出了层次化时间戳聚合机制,使TOC-RE策略能够提供尽力而为的服务;其次,设计了丢包处理机制和故障恢复机制,使TOC-Re策略实现可靠的传输服务.采用测试平台评估TOC的性能,结果表明TOC以较低的开销实现了高吞吐量和低延迟,具有一定的可扩展性.
学术文献中蕴含着丰富的引用信息,文献引用是科研评价和文献计量领域的主要分析对象和研究热点.相比基于数学和统计学的定量分析方法,利用可视化方法既可以实现引用信息时序、层次结构的直观呈现,也可以实现复杂引用网络的交互式挖掘,对科研评价改革和文献计量方法创新具有重要意义.文中首先介绍了近年来国内外学术引用信息分析的相关研究,总结了学术引用信息可视化的一般框架;然后根据实体评价和文献计量两类应用场景对可视化方法进行分类,详细阐述了可视化方法在两类应用场景中的研究现状和优缺点;最后指出了学术引用信息可视化面临的挑战
图嵌入降维算法由于其有效性被广泛应用.传统图嵌入算法构造K-Nearest Neighbors(K-NN)图的计算复杂度至少为O(n2 d),其中n为样本数,d为样本维度.在数据量大的情况下,构造K-NN图将非常耗时,因为其计算复杂度与样本数的平方成正比,这将限制图嵌入算法在大规模数据集上的应用.为降低构图过程的计算复杂度,提出一种基于锚点的快速无监督图嵌入算法(Fast Unsupervised Graph Embedding Based on Anchors,FUGE).该算法首先从数据集中选取锚点(