论文部分内容阅读
近年来,高质量社区的挖掘和发现已经成为复杂网络研究的一个热点。目前大多的社区发现算法主要针对无向网络,但现在的很多真实网络通常都是有向加权的。同时,标签传播算法(LPA)是一种接近线性复杂度的社区发现算法,该算法具有简单高效、不需要提供社区规模和社区个数等先验知识的特点,因而得到了广泛关注和应用。针对有向加权网络,提出了一种基于节点重要性和节点相似性的改进标签传播算法(CRJ-LPA)。该算法综合考虑节点的边权、节点的信息传播能力、节点相似度以及节点集聚系数等因素。算法通过加权的ClusterRank获得