论文部分内容阅读
研究了时滞Rossler系统的Hopf分岔问题。将规范形和Hopf分岔理论相结合,给出时滞Rossler系统的Hopf分岔产生条件,得出了系统时滞参量的Hopf分岔点,并分析了系统在时滞分岔点附近的稳定性。在计算过程中,采用换元法简化了在非零平衡点处的线性化系统,减少了对系统Hopf分岔分析的运算量。通过MATLAB软件绘制了系统在不同时滞参量条件下的仿真图像。仿真结果表明:时滞Rossler系统在时滞分岔点发生了超临界Hopf分岔,且时滞参量在时滞分岔点附近的改变会影响系统的稳定性。