论文部分内容阅读
针对支持向量机应用过程中的参数选择问题,从UCI数据库选择样本集,分别采用传统的网格法、智能优化算法中的粒子群法及遗传算法实现核函数参数寻优过程,将所得最佳参数应用到样本测试中;在深入分析优化过程中各参数关系、参数对支持向量机性能的影响以及传统与智能优化算法的优劣后,得出了核函数优化策略;即先使用智能优化算法初步确定最优解范围,再结合网格法进行高精度寻优;实验数据验证了参数优化策略的有效性,为扩大支持向量机泛化率、提高应用性做了铺垫。