论文部分内容阅读
四轮驱动混合电动车辆稳定性控制逻辑建议采用后马达能量回收制动和一个电液制动器(EHB)。采用一个通常的算法,求得能量回收制动和EHB转矩之间最佳的转矩分布。根据已知输入的所要求的偏转转矩和道路摩擦系数,用该通常算法计算出最佳能量回收制动转矩和最佳的EHB转矩。基于最佳的制动转矩分布,相应驾驶员转向角和车辆速度,用模糊控制算法,车辆稳定控制逻辑建议形成所要求的偏转转矩,去补偿侧滑角和偏转率的误差。对单车道变更机动性用比较固定能量回收制动和最佳能量回收制动,判断车辆稳定性控制逻辑的性能。由仿真结果可以看到,在满足车辆稳定性的情况下,最佳能量回收制动可以比固定的能量回收制动增大能量回收。
The four-wheel drive hybrid electric vehicle stability control logic recommends the use of a rear motor energy recovery brake and an electro-hydraulic brake (EHB). A common algorithm is used to find the optimal torque distribution between regenerative braking and EHB torque. Using this known algorithm, the optimal energy recovery braking torque and the optimal EHB torque are calculated based on the known input required deflection torque and road friction coefficient. Based on the optimal brake torque distribution, corresponding driver steering angle and vehicle speed, fuzzy control algorithm and vehicle stability control logic are suggested to form the required deflection torque to compensate for the error of side slip angle and yaw rate. Modifying maneuvering for a single lane Using fixed energy recovery braking and optimal energy recovery braking to determine the performance of the vehicle stability control logic. From the simulation results, it can be seen that in the case of meeting the stability of the vehicle, the optimal energy recovery braking can increase the energy recovery compared with the fixed energy recovery braking.