论文部分内容阅读
考察了一类非线性四阶弹性梁方程解的存在性.在力学上,这类方程描述了一个端点固定、另一个端点被滑动夹子夹住的弹性梁的形变;其特点是非线性项含有未知函数的三阶导数.文中通过使用边值问题的分解技巧把这个方程转化为不动点方程.然后通过构造适当的Banach空间并利用Leray—Schauder不动点定理建立了这类方程解的4个存在定理.结果表明,只要非线性项在某个有界集上的“高度”是适当的,这类方程至少有一个解或者正解.