论文部分内容阅读
粒子群优化算法,起源于鸟群行为的研究,是一种基于群智能的进化计算技术,通过粒子之间的协作与竞争以实现对多维复杂空间的高效搜索。该文研究了粒子群优化算法的生物特征,提出粒子群优化算法的异步模式,使进化中的粒子个体充分表现出独立性,种群表现出异步性。异步模式的程序实现通过MFC多线程并行仿真实现。最后,采用经典测试函数验证异步模式的有效性,测试结果表明:与同步模式(经典PSO算法)比较分析,异步模式的收敛速度显著提高,同时刻的寻优效果更好。