论文部分内容阅读
针对交互式多模型粒子滤波算法中因采样粒子缺乏最新量测信息而造成的滤波精度受限问题,在混合卡尔曼粒子滤波算法的基础上,对交互式多模型粒子滤波算法进行了改进,提出了交互式多模型混合卡尔曼粒子滤波算法,并研究了不同组合方式对跟踪精度的影响。首先用无迹卡尔曼滤波产生系统的状态估计,然后用扩展卡尔曼滤波得到粒子的重要性建议分布,充分利用量测信息,对粒子状态进行更新。仿真结果表明,所提出的改进交互式多模型粒子滤波算法目标跟踪精度优于交互多模型无迹卡尔曼粒子滤波算法以及交互多模型扩展卡尔曼粒子滤波算法,从而证明了该算法