基于北斗短报文技术的电压监测系统的设计

来源 :中国新通信 | 被引量 : 0次 | 上传用户:johnlu2828
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  【摘要】    电压监测仪主要安装在配网侧,安装分散,且采用GPRS的方式进行通信。但GPRS通信传输速率低、实时性及可靠性不高,管理人员难以掌握装置的运行状态,很多情况下装置模块故障导致通讯中断、数据异常等很难发现,难以保证数据监测的全年连续性。针对以上情况,本文提出基于北斗卫星技术的电压监测系统,将北斗卫星的短报文应用于电压监测仪的定位、校时,以及电压监测数据的传输,提高电压监测及运维的可靠性。
  【關键词】    电压监测    北斗卫星    短报文
  Abstract: Voltage monitoring equipment are mainly installed in distribution network, the installation is dispersed, and GPRS is used for communication. However, the transmission rate of GPRS is low, and real-time and reliability is not high. Managers cannot grasp the operating state of the equipment. In many cases, the communication failure and data anomaly are hard to observe. Thus, it is difficult to ensure the continuity of data monitoring. According to this, this paper proposed a voltage monitoring system based on Beidou satellite technology, which applies the short message of Beidou satellite to the position, time and voltage monitoring data transmission of the voltage monitoring equipment. It will improve the reliability of voltage monitoring and operation and maintenance.
  Key words: voltage monitoring; Beidou satellite; short message
  引言
  电压监测仪是一种安装场景多样、覆盖地域广的仪表,其作用在于监测各类线路的电压合格率;从电网角度看,电压监测仪安装位置覆盖发、变、配等多个环节,尤其集中在配电网。由于电压监测仪覆盖面广,目前常选择GPRS通讯[1-2],而GRPS通讯技术存在传输速率较低、实时性、可靠性不高,数据传输质量太依赖各营业商的基站分配、密度等,对于实时性要求很高的业务,其很难满足,如校时、停电事件等实时性要求很高的业务。
  目前对电压监测仪的管理,普遍采用人工巡维的方式[3]。由于安装量大,安装位置分散,管理人员很难掌握装置运行状态,在很多情况下,由于装置模块的故障导致通讯中断、数据异常等难以被发现,因此,难以保证数据监测的全年连续性。
  北斗卫星定位系统是我国正在实施的自主发展、独立运行的全球卫星导航系统,具有全天候、无死角、高精度、实时回传等特点,成功应用在农业、水利、渔业等诸多领域[4],因此,本文将北斗卫星技术应用于电压监测系统,将北斗卫星的短报文应用于电压监测仪的定位、校时,以及电压监测数据的传输,以提高电压监测数据的可靠性,同时降低运维的工作成本,提高运维的工作效率。
  一、北斗短报文通信技术的优势
  北斗卫星系统可在所覆盖范围内为各类用户提供高精度的定位和授时服务,目前已经覆盖“一带一路”国家地区。北斗卫星的定位精度为10m,授时精度为10ns[5-6],满足绝大部分用户的定位和授时需求。同时,北斗卫星系统的短报文通信具备信息量小、实时性高、覆盖范围广、传输安全可靠等优点,特别是对于同时需要进行精确定位和信息传递的应用场景,有着得天独厚的优势,可满足安装在现场的电压监测仪与电压监测主站间信息的实时传递需求,为电压监测运维人员提供精准的定位服务,提高工作的便利性。因此,将北斗短报文通信方式应用于电压监测数据的传输,不仅能够解决电压监测仪目前存在的通信及定位问题,还能提高数据传输的效率和安全性。
  二、基于北斗短报文的电压监测系统设计
  2.1系统总体架构
  电能监测系统采用分层式结构,将系统分为数据采集层、北斗通信层,以及主站应用层。数据采集层包括安装在各电压监测点的带北斗通信功能的电压监测仪,用于对各监测点的电压数据的采集;北斗通信层包括北斗指挥机及通信服务器,用于电压监测仪与主站之前的数据采集与传输;主站应用层包括数据库服务器、Web服务器等服务器群,用于数据的存储、分析、应用与展示等。电压监测系统的系统架构图如图1所示。
  2.2电压监测系统功能结构
  电压监测系统软件主要由以下四个模块组成:
  1)配置与管理模块,主要用于系统运行前的配置,包括系统参数配置模块、数据库管理模块;
  2)数据采集与存储模块,主要用于实现与电压监测终端的通信,采集电压数据并存储到数据库中,包括数据采集模块、数据服务器模块;
  3)通信管理模块,主要是用户实现数据采集与存储模块与装置的通信,主要包括网络桥接程序;
  4)信息发布模块,通过Web实现电压数据的查询与分析,包括数据分析、台账管理、数据管理、事件查询等功能。   软件功能结构如图2所示。
  三、北斗短报文通信方案设计
  由于北斗短报文技术对数据传输的频度(每分钟一次)和每次传输的长度(76字节)有限制,因此,电压监测仪和电压监测主站不适合在北斗短报文信道上通过现有的通信规约进行通信,因此需要制定采用北斗短报文通信时,电压监测仪与电压监测主站之间的通信规约。
  3.1 通信规约基本约定
  适用于北斗短报文的通信规约有以下基本约定:
  1)所有数据采用大端格式进行传输,即0x1234的发送顺序为0x12、0x34;
  2)正常情况下,所有数据均由电压监测仪主动上送到主站,主站无需确认。若发现上送的数据有缺失,则发送数据补召命令,然后等待设备主动上送缺失的数据;
  3)电压监测仪设有报文发送队列,且支持高优先级报文优先发送。
  3.2报文基本格式设计
  报文按照地址域、报文类型、监测通道、数据域的顺序进行排列,其基本格式如表1所示。
  其中,报文类型标识出报文的类型,数据域为报文的具体内容。
  3.3电压监测仪上送报文内容设计
  根据通信规约的基本约定,电压监测仪在正常情况下,主动将数据上送至主站,上送的数据类型包括:
  1)电压分钟数据:用来上传5分钟电压分钟数据,每小时发送一条报文,将前一小时内的12个电压分钟数据上送到主站;
  2)电压日统计数据:用来上传电压日统计数据,每日发送此报文,将前一日的电压统计数据上送到主站;
  3)电压月统计数据:用来上传电压月统计数据,每月发送此报文,将前一个月的电压月统计数据上送到主站;
  4)位置数据:用来上传电压监测仪的位置数据,按照设定的时间间隔,将当前的位置信息上送到主站;
  5)自检事件数据:若发生了自检事件,将在下一个北斗短报文发送窗口到来时将自检事件上送到主站,自检事件包括装置上电、电压越上限、电压越上限恢复、电压越下限、电压越下限恢复、停电、来电等事件信息;
  6)监测参数:用来上传设备某个监测通道的监测参数,装置每次上电后,主动上送一次监测参数,在主站请求读取时,以此报文进行响应;
  7)基本信息:用来上送设备的基本信息,装置每次上电后,主动上送一次基本信息,在主站请求读取时,以此报文进行响应。
  3.4电压监测系统下发报文内容
  根据通信规约的基本约定,电压监测系统在检测到数据缺失时,将向电压监测仪请求数据的上送,请求内容包括:
  1)请求电压分钟数据:用来请求设备上传电压分钟数据,设备在接到主站的此请求后,应以电压分钟数据上送报文上送主站请时间段的电压分钟数据;
  2)请求电压日统计数据:用来请求设备上传电压日统计数据,设备在接后到主站的此请求后,应以电压日统计数据上送报文上送主站请求时间段的电压日统计数据;
  3)请求电压月统计数据:用来请求设备上传电压月统计数据,设备在接后到主站的此请求后,应以电压月统计数据上送报文上送主站请求时间段的电压月统计数据。
  此外,也可以通过手动请求的方式,向电压监测仪要求数据的上送,包括:
  1)请求位置数据:用来请求设备上传位置数据,设备在接后到主站的此请求后,应以位置数据上送报文上送设备最近一次的位置数据;
  2)请求监测参数:用来请求设备上传监测参数,设备在接后到主站的此请求后,应以监测参数上送报文上送设备的监测参数;
  3)写入监测参数:用来请求设备写入新的监测参数,设备在接后到主站的此请求后,应以监测参数上送报文上送修改后的监测参数;
  4)请求基本信息:用来请求设备上传基本信息,设备在接后到主站的此请求后,应以基本信息上送报文上送设备的基本信息。
  根据以上设计的通信方案以及数据采集的类型,可以满足电压监测系统的数据分析、台账管理、数据管理,及事件查询等功能的应用,同时也能高效稳定地对电压监测仪进行定位、校时。
  四、总结
  北斗通信技術能同时实现校时、定位、数据传输功能,可以解决目前对电压监测仪运维困难,且GPRS通信可靠性不高的问题。本文将北斗通信技术应用于电压监测系统,在具备北斗通信功能的电压监测仪的支持下,设计了电压监测系统的网格结构及功能,并基于北斗短报文的特点,设计了适用于北斗短报文的通信规约,满足对电压监测仪的定位、校时,以及电压监测数据的传输,可提高电压监测及运维的可靠性。
  参  考  文  献
  [1] 陆轶阳, 盛占石. 基于GPRS的新型电压监测仪的设[J].信息技术, 2015 (10): 179-181.
  [2] 孙建东, 岳仁超. 基于智能GPRS模块的电压监测仪设计[J]. 自动化与仪器仪表, 2014(08): 70-71.
  [3] 王莆, 杨子力, 尹定座, 张崔金, 周继宏. 浅谈电压监测仪在电网运行中的应用及其周期检测[J]. 电力设备管理, 2018(10): 42-43, 64.
  [4] 承轶青, 孙凌卿, 傅启明. 北斗短报文通信技术在电力系统的应用[J]. 电子世界,  2018(19): 170, 172.
  [5] 陶俊. 北斗通信技术在电力行业中的研究与应用[J]. 中国新通信, 2017, 19(24): 9-10.
  [6] 范甬. 基于北斗导航系统的智能配网线路综合监测系统研究[D]. 华北电力大学(北京), 2017.
其他文献
随着光伏发电的广范应用,影响光伏组件发电性能及其寿命的因素也越来越被重视,热斑现象就是其中之一。当太阳电池存在遮挡、损坏等导致组件内电流出现失配情况时,都可能引起光伏组件发生热斑效应,影响光伏系统的发电量,缩短光伏系统的使用寿命,局部温度过高甚至引起起火等安全事故。研究光伏系统的热斑现象及改善方法对太阳光伏发电产业的健康发展有着重要意义。本文以改善热斑现象对组件损坏的目标,结合太阳电池等效模型,分
全光纤电流互感器(AFOCS,All Fiber optic current sensor)是一种基于法拉第磁光效应的用于电流测量或继电保护的新型装置,因其抗干扰能力强、绝缘性能好、测量范围大等优点,
The density functional theory (DFT) with dispersion corrections was used to study the adsorption behavior of sulfur and nitrogen compounds on NiMoS phase. The c
随着表面等离子体光子学和纳米技术的发展,光与金属微纳结构之间的相互作用而产生的表面等离子体共振特性已成为一个研究热点,其在生物医疗、材料科学与光电传感器件等领域有着广泛的应用前景。而经过金属光栅结构调制的表面等离子体共振效应,常常被人们利用来研究光与金属周期性结构之间的相互作用。论文基于前人的研究成果,结合成熟的硅加工及金属剥离工艺,优化设计了一种具备Fano共振的金属V型光栅等离子共振结构。论文
学位
【摘要】 本文研究了不同频率下5G传播损耗随路径的关系,以及不同频率、材质对穿透损耗的影响。并进一步通过链路预算分析,提供了3.5G频率下不同场景和边缘速率对站间距的要求,为5G无线网络规划提供参考。  【关键词】 5G 传播模型 链路预算 穿透损耗 路径损耗  一、前言  无线网络规划是5G部署的重要一环,而对5G基站的覆盖预测又决定了5G网络的部署方法与规模。传播模型反映了相应频段的
【摘要】 目前,伴随着信息时代的不断发展,使通信技术进一步革新。在近年来,移动通信技术由2G通信技术逐渐转变成3G通信技术,继而发展到4G通信技术,而在今年部分城市已经开始测试5G移动通信技术,这表明5G通信技术在不久的将来会逐渐普及。移动通信技术发展的速度日益加快,为人们的生产、生活带来了便利。与此同时,用户对通信技术提出了更高的要求。为此,本文依据5G移动通信技术的应用作为入手点,分析了5G