【摘 要】
:
量子比较器是量子算法设计中的重要组成部分,其对于量子算法的物理实现具有重要意义。针对比较器的量子代价与垃圾输出优化问题,分成三个阶段提出了改进TR门级联的量子比较器设计方案:第一个阶段使用布尔逻辑推导了方案的实现,并对其进行简化;第二个阶段设计了1位的量子比较器;第三个阶段将比较器进行级联,并实现n位的一般性比较器。通过迭代式的推导证明了其正确性,对比其他文献,该设计减少了近12.6%的量子代价,同时节约了47.6%的垃圾输出。通过实验仿真,证明其可以正常运行。与其他类型比较器相比,该设计所需的量子代价与
论文部分内容阅读
量子比较器是量子算法设计中的重要组成部分,其对于量子算法的物理实现具有重要意义。针对比较器的量子代价与垃圾输出优化问题,分成三个阶段提出了改进TR门级联的量子比较器设计方案:第一个阶段使用布尔逻辑推导了方案的实现,并对其进行简化;第二个阶段设计了1位的量子比较器;第三个阶段将比较器进行级联,并实现n位的一般性比较器。通过迭代式的推导证明了其正确性,对比其他文献,该设计减少了近12.6%的量子代价,同时节约了47.6%的垃圾输出。通过实验仿真,证明其可以正常运行。与其他类型比较器相比,该设计所需的量子代价与
其他文献
现有雾天图像处理方法能够实现较好的去雾效果,但会丢失部分细节并产生噪声放大的问题。将暗原色先验与基于TV、BH规则项的变分模型相结合,提出一种新的变分去雾模型H-TVBH。根据暗原色先验原理估计图像的初始透射率,采用四叉树分解估计大气光值,将初始透射率和大气光值输入H-TVBH模型中,采用分裂Bregman算法和快速傅立叶变换并引入辅助变量和Bregman迭代参数,通过交替迭代求得优化后的透射率和
现有的人脸对齐方法多数是非端到端的,中间过程需要大量的人工干预,导致人脸关键点检测的稳定性较差。为此,提出一种端到端的基于深度学习的人脸对齐方法。基于MobileNets系列网络的子模块,使用类VGG结构的方式进行搭建,将整张图片作为输入,采用基于深度可分离卷积模块进行特征提取,并运用改进的倒残差结构避免网络训练过程的梯度消失,减少特征损失。在此基础上将眼间距离作为正规化方法,在300W人脸数据集
路径规划的目的是让机器人在移动过程中既能避开障碍物,又能快速规划出最短路径。在分析基于强化学习的路径规划算法优缺点的基础上,引出能够在复杂动态环境下进行良好路径规划的典型深度强化学习DQN(DeepQ-learningNetwork)算法。深入分析了DQN算法的基本原理和局限性,对比了各种DQN变种算法的优势和不足,进而从训练算法、神经网络结构、学习机制、AC(Actor-Critic)框架的多种变形四方面进行了分类归纳。提出了目前基于深度强化学习的路径规划方法所面临的挑战和亟待解决的问题,并展望了未来的
在C-V2X通信中,Mode 4资源分配方式使用基于感知的半持续调度(SB-SPS)算法进行资源分配,但该算法以最大功率传输安全消息,在高密度交通流状态下会导致系统的可靠性下降。为对SB-SPS算法进行优化,提出一种基于深度强化学习的联合资源分配与功率控制算法。车辆在感知到信道后,为安全消息选择干扰最小的子信道,并根据信道状态自适应调整传输功率,通过与环境交互学习的方式求解最优的子信道选择方案和功率控制方案。仿真结果表明,与SB-SPS优化算法相比,该算法在高密度公路场景下分组接收率提高5%,有效提升了车
针对YOLO目标检测算法存在边界框定位不准确及对小目标检测精度低的问题,提出一种改进的YOLO目标检测算法dcn-YOLO。使用k-means++算法聚类出更符合数据集尺寸的锚盒,以降低初始点对聚类结果的影响并加快网络训练收敛速度。构建残差可变形卷积模块res-dcn,分别采用将其嵌入YOLO第一特征提取头模块中和替换3个YOLO特征提取头模块的方式,构建两种改进的dcn-YOLO算法,使网络可以
“刘雨鑫!你还不赶快给我进书房里写作业去!”老妈怒气冲冲地吼道。面对妈妈那比张飞还要强一个等级的“河东狮吼”,我只好默默地放下电视遥控器,站起身,像遇见警察的小偷一样,战战兢兢地走进书房,做起了作业。 为什么会出现开头这一幕?为什么我会如夏侯杰被张飞吓得失魂落魄、六神无主一般呢?全都是因为我做了一件突破妈妈底线的事情。 那是周末一个阳光明媚的早晨。妈妈要去单位加班,临出门前,妈妈专门嘱咐我先做
为降低新一代高效视频编码标准H.266/VVC的编码复杂度,提出一种快速的帧内预测模式判决方法。从率失真理论的角度出发,分析变换域残差的分布特性,根据标量量化技术对码率的影响推导出编码码率预测模型。结合帧内预测原理,利用当前块预测残差、参考块预测残差及其编码失真提出编码失真预测模型,并根据率失真代价确定最优的帧内预测模式。实验结果表明,该判决方法在保证编码效率的同时约节省了31%的编码时间。
我家门前有几棵大树,是鸟儿的天堂。一到傍晚,就有成群结队的小麻雀在树上叽叽喳喳地叫着,欢快地跳来跳去。 一天,有一只小鸟不小心飞进了我家。它惊慌失措,横冲直撞,到处找出口。直到累了,它才停在了客厅。妈妈把它捉住,给了我。我见这只小鸟特别可爱,想把它养在家里。可是,爸爸媽妈不同意,妈妈对我说:“野生的鸟儿向往自由,所以,它们宁愿被饿死,也不会吃人给的东西。而且,它的爸爸妈妈还在等它回家呢!”是呀,
无线胶囊内镜(WCE)技术可以检测出肠胃道异常,计算机辅助诊断WCE图像方法由于标注图像数据量少、图像类内变异度高和类间相似等原因导致效果不佳。为此,提出一种基于注意力关系网络的WCE图像多分类方法。将关系网络、注意力机制以及元学习训练策略相结合,构造基于注意力机制的嵌入模块以提取WCE图像特征,将提取后的特征进行特征映射级联后输入到关系模块,根据关系模块输出的相似性评分判断样本所属类别,采用元学
随着无人机技术的快速发展,无人机在研究领域和工业应用方面受到了广泛的关注。图像和视频是无人机感知周围环境的重要途径。图像语义分割是计算机视觉领域的研究热点,在无人驾驶、智能机器人等场景中应用广泛。无人机航拍图像语义分割是在无人机航拍图像的基础上,运用语义分割技术使无人机获得场景目标智能感知能力。介绍了语义分割技术和无人机的应用发展、相关无人机航拍数据集、无人机航拍图像特点和常用语义分割评价指标。针