论文部分内容阅读
In this study, 107 types of human papillomavirus (HPV) L1 protein sequences were obtained from available databases, and the nuclear localization signals (NLSs) of these HPV L1 proteins were analyzed and predicted by bioinformatic analysis. Out of the 107 types, the NLSs of 39 types were predicted by PredictNLS soft- ware (35 types of bipartite NLSs and 4 types of monopartite NLSs). The NLSs of the remaining HPV types were predicted according to the characteristics and the homology of the already predicted NLSs as well as the general rule of NLSs. According to the result, the NLSs of 107 types of HPV L1 proteins were classified into 15 categories. The different types of HPV L1 proteins in the same NLS cat- egory could share the similar or the same nucleocytoplasmic transport pathway. They might be used as the same target to prevent and treat different types of HPV infection. The results also showed that bioinformatic technology could be used to analyze and predict NLSs of proteins.
Out of the 107 types, the NLSs (HPV) L1 protein sequences were obtained from available databases, and the nuclear localization signals (NLSs) of these HPV L1 proteins were analyzed and predicted by bioinformatic analysis. of 39 types were predicted by Predict NFLS soft ware (35 types of bipartite NLSs and 4 types of monopartite NLSs). The NLSs of the remaining HPV types were predicted according to the characteristics and the homology of the already predicted NLSs as well as the general rule of NLSs. According to the result, the NLSs of 107 types of HPV L1 proteins were classified into 15 categories. The different types of HPV L1 proteins in the same NLS cat-etory could share the similar or the same nucleocytoplasmic transport pathway. They might be used as the same target to prevent and treat different types of HPV infection. The results also showed that bioinformatic technology could be used to analyze and predict NLSs of proteins.