论文部分内容阅读
对纤维缠绕环氧树脂基复合材料压力容器加压,可以得到声发射振幅分布数据,从而建立起此类容器爆破压力的预测模型。可用一个反向传递人工神经网络预测其爆破压力,实验证明,该方法的预测误差在5%以内。
The fiber-wound epoxy composite pressure vessel can be pressurized to obtain the acoustic emission amplitude distribution data to establish the prediction model of the burst pressure of such vessels. A back propagation artificial neural network can be used to predict the burst pressure. Experiments show that the prediction error of this method is within 5%.