论文部分内容阅读
Different aggregates of LHC II play a very important role in regulating the light absorption and excitation energy transfer of plant. Trimeric LHC II was purified from spinach thylakoid membrane. In order to obtain the dimeric and monomeric LHC II, the trimer was treated with the mixture of 2% OGP and 10 ?g/mL PLA2, then loaded onto the sucrose density gradient in the presence of 0.06% triton X-100. The LHC II trimer, dimer and monomer isolated by sucrose density gradient all contained three polypeptides with molecular weight of 29, 28 and 26 kd respectively. The pigment composition showed much difference in the content of Chl b and xanthophyll among three forms of LHC II. To study the light capture and excitation energy transfer in different forms of LHC II, the absorption and fluorescence spectra were analyzed. The results clearly showed that the efficiency of energy absorption and transfer was different in the three kinds of LHC II, the highest for trimeric LHC II, intermediate for dimeric LHC II, and the lowest for monomeric LHC II. It was suggested that there might be a physiological homeostasis of different aggregates of LHC II in plants, which is significant for the plant self-regulating upon exposure to variable light environment.