论文部分内容阅读
文章提出了一种基于属性重要度的多变量决策树的构造算法。基本思想是将等价关系相对泛化的概念用于多变量检验的构造,在单变量结点的构造时,算法倾向选择属性重要度最大的条件属性作为检验属性。实验表明,该算法具有良好的性能,不仅有效降低了树的高度,而且还兼顾了分类的可读性,是效率较高的决策树生成方法。