【摘 要】
:
Based on the CNN-LSTM fusion deep neural network,this paper proposes a seismic velocity model building method that can simultaneously estimate the root mean square(RMS)velocity and interval velocity from the common-midpoint(CMP)gather.In the proposed meth
【机 构】
:
School of Computer and Information Technology,Northeast Petroleum University,Daqing 163318,China;Sch
论文部分内容阅读
Based on the CNN-LSTM fusion deep neural network,this paper proposes a seismic velocity model building method that can simultaneously estimate the root mean square(RMS)velocity and interval velocity from the common-midpoint(CMP)gather.In the proposed method,a convolutional neural network(CNN)Encoder and two long short-term memory networks(LSTMs)are used to extract spatial and temporal features from seismic signals,respectively,and a CNN Decoder is used to recover RMS velocity and interval velocity of underground media from various feature vectors.To address the problems of unstable gradients and easily fall into a local minimum in the deep neural network training process,we propose to use Kaiming normal initialization with zero negative slopes of rectified units and to adjust the network learning process by optimizing the mean square error(MSE)loss function with the introduction of a freezing factor.The experiments on testing dataset show that CNN-LSTM fusion deep neural network can predict RMS velocity as well as interval velocity more accurately,and its inversion accuracy is superior to that of single neural network models.The predictions on the complex structures and Marmousi model are consistent with the true velocity variation trends,and the predictions on field data can effectively correct the phase axis,improve the lateral continuity of phase axis and quality of stack section,indicating the effectiveness and decent generalization capability of the proposed method.
其他文献
利用直流磁控溅射法在微米量级的金刚石粉体上通过改变溅射功率和溅射时间等制备条件,实现了金属镍在金刚石粉体上的有效沉积.用激光共聚焦拉曼光谱研究了溅射前后金刚石粉体的拉曼光谱;同时,利用拉曼光谱仪的mapping模式,研究了镀镍后金刚石的拉曼成像.
反馈、前馈-反馈、串级、前馈-串级是传统的控制策略,在实际应用过程中存在不足.仿人思维控制方法模拟人的控制智慧,将仿人思维控制方法与传统控制策略相结合,提出仿人思维智能前馈-反馈、仿人思维智能串级、仿人思维智能前馈-串级控制策略,克服传统控制策略存在的不足,取得了很好的实验结果.这些智能控制策略可以应用在实际控制系统中.
本文旨在探究新疆荒漠肉苁蓉毛蕊花苷部位对慢性全脑低灌注(CCH)致小鼠认知功能障碍的影响.于双侧颈总动脉外套以内径0.19 mm的不锈钢微弹簧复制小鼠CCH模型,甲苯胺蓝O灌注染色考察脑血流灌注水平,Morris水迷宫考察小鼠空间学习记忆功能,于饮水中补充毛蕊花苷提取物连续干预4个月,比色法测定海马组织乙酰胆碱酯酶(AChE)和超氧化物歧化酶(SOD)活性以及丙二醛(MDA)水平.结果表明,造模后4个月,小鼠表现出明显的认知功能障碍,于饮水中补充毛蕊花苷提取物(0.16~0.64 g/L)可明显改善CCH
本文旨在研究吲哚胺2,3-双加氧酶(IDO)抑制剂LPM3480226联合多靶点抗血管生成药物索拉菲尼的抗肿瘤效应及其潜在作用机制.采用小鼠肾癌Renca移植瘤模型,经口灌胃给予200 mg/kg LPM3480226(2次/d),15 mg/kg索拉菲尼(1次/d),或二者联用,连续19 d,观察荷瘤小鼠体重、肿瘤体积、肿瘤重量、肿瘤浸润CD3+CD4+和CD3+CD8+T细胞比例以及肿瘤组织CD34阳性微血管密度(CD34-MVD).结果显示,LPM3480226与索拉菲尼联用时动物体重未显著降低,二
The model-driven inversion method and data-driven prediction method are effective to obtain velocity and density from seismic data.The former necessitates initial models and cannot provide high-resolution inverted parameters because it primarily employs m
Large-scale,fine,and efficient numerical simulation of a geothermal field plays an important role in geothermal energy development.Confronted with the problem of large computation and high storage requirements for complex underground models in a three-dim
采用水平低周往复拟静力试验方法,研究钢管束混凝土组合剪力墙受力性能.运用条带法对钢管束混凝土组合剪力墙压弯承载能力进行了数值计算分析,并建立了极限承载能力计算的简化计算公式.结果表明,条带法数值计算方法、简化计算公式的计算结果均与试验结果有较高的吻合度,可以用于实际构件的承载能力计算.在承载能力计算分析的基础上,分析了钢板厚度、钢材强度、混凝土强度等参数对组合剪力墙压弯承载能力的影响.研究表明,其他参数不变的情况下,提高混凝土强度和钢材强度均能一定程度地提高剪力墙的承载能力,且钢材强度影响较大;提高钢板厚
Endemic plants are important for understanding phylogenetic relationships,biogeographical history,and genetic variation because of their restricted distribution and their role in conserving biodiversity.Here,we investigated the phylogenetic relationships
The gravity inversion is to restore genetic density distribution of the underground target to be explored for explaining the internal structure and distribution of the Earth.In this paper,we propose a new 3D gravity inversion method based on 3D U-Net++.Co
Gravity and magnetic exploration areas are usually irregular,and there is some data deficiency.Missing data must be interpolated before the vertical derivative conversion in the wavenumber domain.Meanwhile,for improved processing precision,the data need t