论文部分内容阅读
针对工业生产中存在着大量的零件识别定位以及装配检测等,传统人工检测效率低、劳动强度大、识别不准确。文章提出了一种基于深度神经网络的零件装配检测方法。首先该方法对零件图像和装配图像进行采集,选择Mask-RCNN网络进行训练,对装配零件进行分类以及定位,通过已识别的零件类型判定装配件是否存在漏装;然后将分割后的零件图像进行二值化处理,利用Canny算子提取零件图像轮廓;最后利用图像的Hu矩特征与正确的零件图像轮廓进行对比,判断装配是否正确。通过实验验证可得,该方法在零件装配中的漏装和换装检测中效果较好