论文部分内容阅读
In this paper N = 4 supersymmetry of generalized Morse oscillators in one dimension is studied. Both bound states and scattering states of its four superpartner Hamiltonians are analyzed by using unitary irreducible representations of the noncompact Lie algebra su(1,1). The spectrum-generating algebra governing the Hamiltonian of the N = 4 supersymmetric Morse oscillator is shown to be connected with the realization of Lie superalgebra osp(1,2)or B(0,1) in terms of the variables of a supersymmetric two-dimensional harmonic oscillator.