论文部分内容阅读
Biomarker identification and cancer classification are two important procedures in microarray data analysis. We propose a novel uni-fied method to carry out both tasks. We first preselect biomarker candidates by eliminating unrelated genes through the BSS/WSS ratio filter to reduce computational cost, and then use a sparse discriminant analysis method for simultaneous biomarker identification and cancer classification. Moreover, we give a mathematical justification about automatic biomarker identification. Experimental results show that the proposed method can identify key genes that have been verified in biochemical or biomedical research and classify the breast cancer type correctly.