论文部分内容阅读
针对当前目标跟踪算法因光照变化、部分遮挡、姿态变化以及背景杂乱等因素引起的跟踪漂移问题,联合混合范数约束和增量非负矩阵分解,提出一种目标跟踪算法。通过对目标的非负矩阵分解获得其局部结构信息,有效应对局部遮挡,同时达到降维目的。通过稀疏描述下的混合范数约束进一步抑制外界环境的干扰,并利用加速近似梯度算法迭代求解优化问题。为更好地满足实时精准跟踪的需求,应用遮挡检测及在线更新策略读取跟踪目标位置。在粒子滤波跟踪框架中的实验结果显示,相比IVT、多示例学习、Frag和L1APG跟踪算法,该算法的鲁棒性更好。