论文部分内容阅读
针对电能质量信号分类存在实时性差、准确度低的问题,提出了一种基于HMT(hit or miss transform)小波范数熵(norm entropy,NE)和支持向量机(support vector machine,SVM)的电能质量扰动识别方法。根据HMT小波分解每一层能量不同的特点,取扰动信号的10层小波分解的范数熵组成特征矩阵。特征量起到了对扰动信号分形的作用,以此作为SVM的输入。为了提高分类的准确度,研究采用了粒子群算法(particle search optimization,PSO)对S