基于ADC图的影像组学模型在判断急性缺血性脑卒中缺血半暗带的价值

来源 :中华放射学杂志 | 被引量 : 0次 | 上传用户:WOAILANTIAN112358
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
目的

探讨基于ADC图的影像组学模型在急性缺血性脑卒中(AIS)患者缺血半暗带(IP)判断中的价值。

方法

回顾性分析南通市第一人民医院2014年1月至2019年10月发病在24 h内的大脑前循环AIS患者241例。所有患者均接受常规T1WI、T2WI、DWI及动态磁敏感对比增强磁共振灌注成像(DSC-PWI)。以PWI-DWI错配模型作为判断IP是否存在的金标准,将患者分为存在IP(即存在PWI-DWI错配)患者(84例),不存在IP(即不存在PWI-DWI错配)患者(157例)。分别由两名医师在AIS患者ADC图像上病灶最大层面对ADC低信号区域及周围区域进行ROI的勾画,将图像导入AK分析软件,进行影像组学特征提取。先采用组间相关系数筛选出一致性较高的特征,再采用最大相关最小冗余(mRMR)及最小绝对收缩与选择算子算法(Lasso)回归分析对特征进行筛选,然后用所选特征构建各自的影像组学评分模型。采用ROC曲线对模型的性能进行评估,并采用Delong检验对两组模型的ROC曲线下面积(AUC)进行比较。

结果

经过筛选,12个特征(LongRunLowGreyLevelEmphasis_angle135_offset7、LongRunLowGreyLevelEmphasis_AllDirection_offset7、GLCMEntropy_AllDirection_offset4_SD、GLCMEnergy_angle45_offset1、ColGE_W11B25_16、ColGE_W11B25_24、HaraEntropy、SurfaceVolumeRatio、Sphericity、Quantile0.025、uniformity、Percentile75)用于构建基于ADC图低信号区域的影像组学模型,训练集中AUC为0.900,灵敏度、特异度、准确度分别为84.5%、81.4%、83.4%;验证集中AUC为0.870,灵敏度、特异度、准确度分别为80.9%、84.0%、81.9%。11个特征(RunLengthNonuniformity_AllDirection_offset1_SD、ShortRunLowGreyLevelEmphasis_angle45_offset1、HighGreyLevelRunEmphasis_AllDirection_offset1_SD、ShortRunLowGreyLevelEmphasis_AllDirection_offset7、HaralickCorrelation_AllDirection_offset4_SD、ClusterShade_angle45_offset7、InverseDifferenceMoment_AllDirection_offset7_SD、ColGE_W3B20_0、sumAverage、SurfaceVolumeRatio、VolumeMM)用于构建基于ADC图病灶周围区域的影像组学模型,训练集中AUC为0.820,灵敏度、特异度、准确度分别为80.5%、80.2%、80.4%;验证集中AUC为0.800,灵敏度、特异度、准确度分别为78.7%、80.0%、79.2%。基于ADC图低信号区域的影像组学模型的AUC大于基于ADC图病灶周围区域的影像组学模型(训练集:Z=3.017,P=0.003;验证集:Z=0.604,P=0.002)。

结论

基于ADC图的影像组学模型在判断缺血半暗带时有较好的诊断效能。

其他文献
声乐是学前教育专业的必修科目,其目的是为了培养幼儿园的学生能够初级的掌握声乐基础和声乐基础技术,能够全面的提高幼儿园学生的综合素质.但是由于幼儿教育不同于成人教育,
针对小样本分割中如何提取支持图像和查询图像共性信息的问题,提出一种新的小样本分割模型,同时结合了全局相似性和局部相似性,实现了更具泛化能力的小样本分割。具体地,根据支持图像和查询图像全局特征和局部特征之间的相似性,提出了一种新型注意力谱生成器,进而实现查询图像的注意力谱生成和区域分割。所提注意力谱生成器包含2个级联模块:全局引导器和局部引导器。在全局引导器中,提出了一种新的基于指数函数的全局相似性
为了更好体现工学结合的职教理念,实现线上线下一体学习,笔者结合微生物检验精品课程的建设,浅谈其配套活页教材的编写与应用.
针对大多数特征表示算法在挖掘高维数据内在结构时容易受到噪声的影响,以及特征学习与分类器设计割裂导致分类性能降低的问题,提出了一种新的基于特征表示的人脸识别方法,称为块对角投影表示(BDPR)学习。首先,利用样本信息对每类样本的编码系数施加一个加权矩阵,通过局部约束来加强表示系数之间的相似性,从而降低噪声对系数学习的影响,使所提方法能够更好地保持数据的局部结构。其次,为了实现数据与编码系数相关联,降
在初中教育的教学阶段中,地理是非常关键的人文性学科.这门学科主要以培养学生良好的人地观为基础,加深学生对学科基础知识的认知及理解,提升学生的人文素养,进而实现学生的
会议