基于非均衡数据层次学习的案件案由预测方法

来源 :计算机科学 | 被引量 : 0次 | 上传用户:youtodown1
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
案件案由是对案件所涉及法律关系性质的描述,科学、完善的案由设置有利于正确适用法律,是人民法院实行案件分类管理的重要途径.案件案由预测技术指基于案件案情的文本描述由计算机自动给出案件所属类别.在案件属性预测研究中,由于低频类别的样本数量较少且难以学习相关特征,因此已有方法在数据处理部分通常会对低频类别样本进行剔除.然而,在案件案由预测问题中,关键的挑战正是如何对属于低频案由的案件做出准确预测.为此,文中提出了一种基于非均衡数据层次学习的案件案由预测方法.在案件案由预测中,根据案由层次结构将案由划分为一级案由和二级案由,二级案由中的大量尾部类别被汇聚成上层样本数较多的大类,进而通过层次学习的方式来实现二级案由的预测,使二级案由有一级案由的信息支撑.最后,引入调整数据不平衡的损失函数来实现案件案由的预测.实验结果表明,所提方法整体优于对比方法,其平均精确率比现有方法提高了4.81%,这表明通过层次学习和引入非均衡数据损失函数能较好地解决案件案由预测问题.
其他文献
有效地对夜间车辆违规使用远光灯的行为进行管理,可以降低夜间交通事故的发生,但目前缺乏高效的远光灯检测方法,相关交通法规无法得到有效执行.针对此问题,文中提出了一种夜间车辆远光灯检测深度学习算法.该算法基于YOLOv3进行设计,通过降低各层卷积层维数的方式,来减少整体网络的参数量,提高算法的运行速度;然后对网络的残差组件进行改进,使用标准的残差组件,同时设计了一个空洞卷积模块来加强网络局部和全局特征的融合,增强了网络的特征表达能力;接着对YOLOv3的损失函数进行了改进,优化小尺寸目标对坐标损失的贡献,增强
在对行人重识别的研究中,联合使用从图像中提取的全身与局部特征已经成为当前的主流方法.但是许多基于深度学习的重识别模型在提取局部特征时忽略了它们在空间上的相互联系,当不同行人具有局部相似的外观时,这些局部特征的辨别能力会受到很大影响.针对该问题,提出了一种学习多粒度区域相关特征的行人重识别方法.该方法在对骨干网络提取的卷积特征张量作不同粒度的区域划分后,设计了区域相关子网络模块来学习融入空间结构关系的各局部区域特征.在区域相关子网络模块中,为了赋予局部特征与其他区域相关联的空间结构信息,综合利用了平均池化运
随着智能驾驶领域的发展,人们对目标检测的精度要求越来越高,尤其是针对高速行驶时对距离较远的小目标的检测和低速行驶时对密集目标的检测.在当前的两阶段检测框架的特征融合部分,使用bottom-up的双向融合方法虽然能够更有效地对大目标进行语义信息和位置信息的特征融合,但会给几个或几十个像素的小目标造成很大的信息损失.当检测网络特征融合部分使用top-down的单向融合方法时,则对大目标检测的效果欠佳.为此,文中提出了相邻特征融合(Neighbour Fea-ture Pyramid Network,NFPN)
随着自然语言处理技术的飞速发展以及互联网上对话语料的不断积累,闲聊导向对话系统(简称聊天机器人)取得了令人瞩目的进展,受到了学术界的广泛关注,并在产业界进行了初步的尝试.当前,聊天机器人分为检索式聊天机器人和生成式聊天机器人,而检索式聊天机器人由于其生成的回复流畅且计算资源消耗小,仍然是目前工业界聊天机器人的主要实现手段.文中首先简要介绍了检索式聊天机器人的研究背景、基本架构以及组成模块,重点阐述了回复选择模块的约束要求和相关数据集;然后,针对检索式聊天机器人中最为核心的回复选择技术,进行了深入分析与详细
相比传统的一问一答,交互式问答增加了对话上下文和背景等信息,这为理解用户输入和推理答案带来了新的挑战.首先,用户输入不再局限于问题,还可以是告知问题细节、反馈答案可行与否等带有意图的语句,因此需要理解对话中每个语句的意图.其次,交互式问答允许多个角色同时参与一个问题的讨论,为每个角色生成个性化的答案,因此需要理解对话中存在的角色.再次,当交互式问答围绕一段背景文本展开时,需要理解这段背景文本,并从中抽取出问题的答案.文章对交互式问答的发展及前沿动态进行了调研,分别对无背景交互式问答、有背景交互式问答以及迁
无人机三维路径规划是一个比较复杂的全局优化问题,其目标是在考虑威胁和约束的条件下,获得最优或接近最优的飞行路径.针对鲸鱼算法在进行无人机三维航迹规划时,存在容易陷入局部最优、收敛速度较慢、收敛精度不够高等问题,提出了一种基于莱维飞行(Lévy flight)的鲸鱼优化算法(Levy Flight Based on Whale Optimization Algorithm,LWOA),用于解决无人机三维路径规划问题.该算法在迭代过程中加入了Levy飞行对最优解进行随机扰动;引入了信息交流机制,通过当前全局最
强化学习领域中策略单调提升的优化算法是目前的一个研究热点,在离散型和连续型控制任务中都具有了良好的性能表现.近端策略优化(Proximal Policy Optimization,PPO)算法是一种经典策略单调提升算法,但PPO作为一种同策略(on-policy)算法,样本利用率较低.针对该问题,提出了一种基于自指导动作选择的近端策略优化算法(Proximal Policy Optimiza-tion Based on Self-Directed Action Selection,SDAS-PPO).SD
现有的脑电(EEG)情感识别研究普遍采用神经网络和单一注意机制来学习情感特征,具有相对单一的特征表示.而神经科学研究表明,不同频率和电极通道的脑电信号对情感有不同的响应程度,因此文中提出了一种融合频率和电极通道卷积注意的方法,用于脑电情感识别.具体来说,首先将EEG信号分解到不同的频带上并提取相应的帧级特征,然后用预激活残差网络来学习深层次的脑电情感相关特征,同时在残差网络的每个预激活残差单元中都融入频率和电极通道卷积注意模块,以建模脑电信号的频率和电极通道信息,并生成脑电特征的最终注意表示.在DEAP和
涉案微博的评价对象抽取是一个特定领域的任务,其评价对象词表达多样且含义与通用领域不同,仅依赖于通用领域的词嵌入无法很好地表征这些评价对象词.为此,提出了一种综合利用领域词嵌入和通用词嵌入的涉案微博评价对象抽取方法.首先对涉案微博文本进行预训练,得到具有涉案领域特征的嵌入层,其次将微博评论分别输入两个嵌入层,得到不同领域对评价对象的表征结果并进行拼接操作,然后通过卷积层抽取出与案件相关的特征,最后利用分类器对序列进行标记,以提取涉案微博评价对象.实验结果表明,所提方法的F1值在#重庆公交车坠江案#和#奔驰女
随着网络虚拟化技术的发展,多域网络中的服务功能链部署为服务功能链优化部署问题带来了新的挑战.传统的部署方法通常对单一目标进行优化,不适用于多目标优化问题,且无法对优化目标间权重进行衡量及平衡.因此,为了对大规模服务功能链部署请求下的时延、网络负载均衡性及接受率进行同步优化,提出了一种数据归一化处理方案,并设计了基于强化学习的两步SFC部署算法.该算法以传输时延与负载均衡性为反馈参数,平衡了两者的权重关系,并对其进行了同步优化,同时利用强化学习框架优化了SFC接受率.实验结果表明,所提算法在大规模请求数下,