论文部分内容阅读
针对冷水机组运行能效模型结构复杂、受运行参数影响较大、机理建模困难等问题,本文建立了基于支持向量回归机的冷水机组运行能效预测模型,并采用粒子群优化算法对模型参数寻优,提高了模型的精度。论文以某商场中央空调离心式冷水机组为研究对象,随机选取396组运行数据对建立的模型进行训练和测试。结果表明,基于粒子群算法优化的冷水机组支持向量回归机模型较BP神经网络模型具有较高的预测精度,其相对误差基本上在3%以内。最后分别采集夏季和过渡季两日的运行数据验证模型的有效性,验证相对误差均在5%以内,因此,该模型能准确地反应