论文部分内容阅读
[摘要]分析了变压器励磁涌流,CT二次回路断线以及切除区外故障的瞬间引起变压器差动保护误动现象,并提出了防止差动保护误动的技术措施。
[关键词]变压器 差动保护 励磁涌流 浪涌电流CT断线 误动
1 前言
国内35KV及以下的变电所中,普遍采用的保护是以分立式继电器构成的。其最大的特点是二次回路构成简单、直观明了、经济、可靠。当电力系统发生故障时,就会伴随着电流突增、电压突降以及电流与电压间相位差角发生变化,这些基本特点就构成了各种不同原理的继电保护装置。作为变压器主保护的纵联差动(简称差动)保护,正确动作率始终在50%~60%徘徊,这对变压器的安全和系统的稳定运行很不利。造成“原因不明”的变压器不正确动作是多方面的,设计研究、制造、安装调试和运行维护部门都有或多或少的责任,虽然实际工作中各个相关的制造厂家都在不断的改进技术提高动作的可靠性,但是变压器差动误动事例仍然为数不少。
2 差动保护误动的原因分析
2.1 励磁涌流引起变压器差动保护误动
变压器励磁涌流的特点是正常运行情况下其值很小,一般不超过变压器额定电流的3%~5%,变压器工作在磁通的线性段OS。铁心未饱和,其相对导磁率μ很大。变压器绕组的励磁电感也很大。当发生外部短路时,由于电压下降,励磁电流更小,因此这些情况下对励磁电流的影响一般可以不考虑。
当变压器空投或故障切除后电压恢复时,由于变压器铁心中的磁通急剧增大,使铁心瞬间饱和,相对导磁率接近1,变压器绕组电感降低,伴随出现数值很大的励磁涌流,包含有很大成分的非周期分量和高次谐波分量,并以二次谐波为主,其数值可以达到额定电流的6~8倍以上,出现尖顶形状的励磁涌流,在起始瞬间励磁涌流衰减很快,对于一般中小型变压器,经0.5~1s后,其值不超过额定电流的0.25~0.5倍,大型变压器励磁涌流的衰减速度较慢,衰减到上述值要2~3s,既变压器的容量越大衰减越慢,同时励磁涌流波形出现间断,有间断角,此电流流入差动继电器,可能引起保护装置误动。
浪涌电流和变压器的激磁涌流一样,只流过变压器一侧,在变压器空投合闸或切除外部短路的电压恢复过程中,全部激磁涌流都将流入差动回路,势必造成变压器差动保护的误动作。且在一台变压器产生激磁涌流的同时,与其并联运行的变压器中还会产生浪涌电流,浪涌电流也将全部流入差动回路,造成变压器差动保护误动作。
可以通过以下措施来判别励磁涌流:(1)采用具有速饱和铁心的差动继电器,(2)鉴别短路电流和励磁涌流的波形,(3)利用二次谐波制动,制动比一般为15%~20%,(4)用波形对称原理的差动继电器。其中(1)主要适用于常规电磁继电器式差动保护:(2)和(4)主要用于微机变压器保护,但对硬件的要求比较高,通过鉴别波形特征能够实现,这是最根本的解决励磁涌流问题的办法。另外,在主变差动保护所用电流互感器选择时,除应选带有气隙的D级铁心互感器外,还应适当地增大电流互感器变比,以降低短路电流倍数,这样可以有效削弱励磁涌流,减少差动回路中产生的不平衡电流,提高差动保护的灵敏度。这对避免保护区外故障,尤其是最严重的三相金属性短路而导致的主变差动保护误动作尤为有效。
2.2 CT二次回路断线引起变压器差动保护误动
传统的电磁式变压器差动继电器的CT回路接线,首先必须通过对CT接线形式的选择进行外部的“相位补偿”,消除变压器接线组别不同造成的高、低压侧电流相位差和差动保护回路不平衡电流。例如常用的Y/dll接线的变压器,由于三角形侧电流的相位比星形侧同一相电流超前30°,必须将变压器星形侧的CT二次侧接成三角形,而三角形侧的CT接成星形,从而将流入差动继电器的CT二次电流相位校正过来。微机型变压器差动保护根据Y,d变换产生的相位移进行内部“相位补偿”计算,例如,为了接线简单,任意接线组别的变压器其CT二次回路都可以采用全星型连接,其相位补偿可以由保护装置内部的软件来实现,而无须像传统的差动保护那样依靠CT接线方式的选择进行外部的“相位补偿”,这种软件的补偿是利用对称分量法进行“矩阵变换”计算得到的。
变压器差动保护的动作电流的整定,一般要考虑以下几个方面的因素及影响:(1)应躲过当变压器空投及外部故障后电压恢复时的变压器励磁涌流的影响,整定公式Idz=KkIe,Kk可靠系数取1.3~1.5,Ie额定电流;(2)应躲过变压器外部故障时在变压器保护中所引起的最大不平衡电流,整定公式Idz=KkIbp,Kk,可靠系数取1.3,Ibp为不平衡电流;(3)应躲变压器差动保护二次回路线时在差动回路中引起的差动电流的影响,整定公式Idz=KkIeoKk为可靠系数,取1.3,Ie为额定电流。以上3种最大值作为变压器的差动动作电流。电磁型变压器差动保护的动作电流整定考虑了第3条,差动回路CT二次回路断线不会误动,晶体管变压器差动保护和微机变压器差动保护的动作电流一般按变压器额定电流的25%~50%考虑,其保护功能用逻辑来实现,比电磁型变压器差动保护快速、灵敏,且动作电流整定得较小。因此在差动回路的CT二次回断线时,如不采取措施,变压器差动保护会误动作。
CT断线最明显的特征是电流下降,在微机型保护中,只要有合理的判断,就不难解决电流互感器二次回路断线时变压器差动保护误动问题。若某侧电流同时满足下列条件认为是CT断线,只有一相或两相电流为零,其它两相或一相电流与起动电流相等,故障相电流的突变量(下降)超过所给的定值,可判断出CT断线。判别出CT断线后,可以在正常负载时闭锁差动,防止变压器差动保护误动作。
2.3 区外故障引起的差动保护误动
区外故障产生差流主要有下面几种原因:(1)变压器正常运行时各侧的额定电流不一致;(2)当变压器一侧带有分节头调节时,电压发生变化产生不平衡电流;(3)电流互感器(TA)本身存在误差;(4)TA不同型号引起的误差:(5)谐波和非周期分量对不同型号TA的影响:(6)不同类型的负载致使各侧电流相位发生偏差。
基于上述因素的考虑,在整定变压器的差动定值时要排除这些不平衡分量的综合影响。其动作电流一般在(0.3~0.5)In(In为额定电流)。当变压器发生严重的区外 故障,两侧会产生更大的差流,在下列情况下可能超过差动门槛值:(1)短路电流较大,各侧互感器型号不一致,特别是短路电流大的一侧使用P级互感器(不带暂态特性的电流互感器),而短路电流小的一侧使用TPY级互感器(带暂态特性的电流互感器);(2)短路电流中含有较大的非周期分量和谐波分量:(3)故障切除瞬间,由于剩磁的存在,电压恢复时产生大小不等的恢复性涌流;(4)特殊性负载如容性或感性负载存在,致使各侧短路电流相位发生偏移,产生更大的差流。
多次事故表明,变压器发生区外故障,在发生区外故障的时间段,差动保护一般不会误动,在切除故障的瞬差动保护反而误动,根据对几例典型事故的录波分析,发现保护动作点均落在差动比例制动曲线(两段折线比例制动)无制动特性的水平线上第一拐点以内,即差流大于门槛值,制动电流小于第一拐点电流(拐点电流为(0.9~1.0)In),如图4所示C点(图中Id为差动电流,Ir为制动电流;K1,K2,K3为比例系数)。
对现场录波数据分析和动模试验仿真,均可知此种情况下保护动作存在必然性。故障时,短路电流比较大,含有非周期分量和谐波分量,故障期间产生的不平衡分量较大(可能大于差动动作门槛值),但制动电流较大,动作点落在非动作区,如图4所示B点。在切除故障的瞬间,两侧TA的暂态分量衰减程度不一样,此时差流仍然比较大,而制动电流减小,动作点移动到如图4所示的C点,差动保护误动,按此原理设置的比例制动曲线保护不能制动。
为了防止区外故障差动保护误动,可以从以下几个方面着手:
(1)在进行继电保护定值计算时。保护定值不宜过低,一般整定在0.4In或以上;
(2)两侧TA尽量选用同一型号的,可以同为P级或TPY级互感器,使用TPY级互感器效果较好:
(3)提高硬件的采样精度和计算准确度:
(4)设置先进的新原理保护。
由于我国多数地方的电力系统站用TA均采用的是P级,有的地方在高压侧采用TPY级,低压侧采用P级,严重影响两侧TA的不平衡性。保护定值要求整定在(0.3~0.5)In极个别地方整定在0.2In,定值门槛太低。
随着计算机水平的发展,保护装置硬件水平不断的提高,多种原理的综合运用,采样精度和计算准确度也在提高。除此之外,也可以从编制的软件着手,来防止区外故障切除时对保护造成的误动。
3 结束语
近年来,微机保护装置的应用日益广泛,但是变压器主保护的误动原因仍是多方面的。本文仅给找不到变压器差动保护误动原因的技术人员提供一些思路,我们只有在安装调试过程中把每一环节工作做细,按照检验条例和有关规程规定,严把整组试验关,积极采取相应措施,是可以提高变压器差动保护的可靠性的,或者完全可以避免主变在运行中差动保护的误动作。
[关键词]变压器 差动保护 励磁涌流 浪涌电流CT断线 误动
1 前言
国内35KV及以下的变电所中,普遍采用的保护是以分立式继电器构成的。其最大的特点是二次回路构成简单、直观明了、经济、可靠。当电力系统发生故障时,就会伴随着电流突增、电压突降以及电流与电压间相位差角发生变化,这些基本特点就构成了各种不同原理的继电保护装置。作为变压器主保护的纵联差动(简称差动)保护,正确动作率始终在50%~60%徘徊,这对变压器的安全和系统的稳定运行很不利。造成“原因不明”的变压器不正确动作是多方面的,设计研究、制造、安装调试和运行维护部门都有或多或少的责任,虽然实际工作中各个相关的制造厂家都在不断的改进技术提高动作的可靠性,但是变压器差动误动事例仍然为数不少。
2 差动保护误动的原因分析
2.1 励磁涌流引起变压器差动保护误动
变压器励磁涌流的特点是正常运行情况下其值很小,一般不超过变压器额定电流的3%~5%,变压器工作在磁通的线性段OS。铁心未饱和,其相对导磁率μ很大。变压器绕组的励磁电感也很大。当发生外部短路时,由于电压下降,励磁电流更小,因此这些情况下对励磁电流的影响一般可以不考虑。
当变压器空投或故障切除后电压恢复时,由于变压器铁心中的磁通急剧增大,使铁心瞬间饱和,相对导磁率接近1,变压器绕组电感降低,伴随出现数值很大的励磁涌流,包含有很大成分的非周期分量和高次谐波分量,并以二次谐波为主,其数值可以达到额定电流的6~8倍以上,出现尖顶形状的励磁涌流,在起始瞬间励磁涌流衰减很快,对于一般中小型变压器,经0.5~1s后,其值不超过额定电流的0.25~0.5倍,大型变压器励磁涌流的衰减速度较慢,衰减到上述值要2~3s,既变压器的容量越大衰减越慢,同时励磁涌流波形出现间断,有间断角,此电流流入差动继电器,可能引起保护装置误动。
浪涌电流和变压器的激磁涌流一样,只流过变压器一侧,在变压器空投合闸或切除外部短路的电压恢复过程中,全部激磁涌流都将流入差动回路,势必造成变压器差动保护的误动作。且在一台变压器产生激磁涌流的同时,与其并联运行的变压器中还会产生浪涌电流,浪涌电流也将全部流入差动回路,造成变压器差动保护误动作。
可以通过以下措施来判别励磁涌流:(1)采用具有速饱和铁心的差动继电器,(2)鉴别短路电流和励磁涌流的波形,(3)利用二次谐波制动,制动比一般为15%~20%,(4)用波形对称原理的差动继电器。其中(1)主要适用于常规电磁继电器式差动保护:(2)和(4)主要用于微机变压器保护,但对硬件的要求比较高,通过鉴别波形特征能够实现,这是最根本的解决励磁涌流问题的办法。另外,在主变差动保护所用电流互感器选择时,除应选带有气隙的D级铁心互感器外,还应适当地增大电流互感器变比,以降低短路电流倍数,这样可以有效削弱励磁涌流,减少差动回路中产生的不平衡电流,提高差动保护的灵敏度。这对避免保护区外故障,尤其是最严重的三相金属性短路而导致的主变差动保护误动作尤为有效。
2.2 CT二次回路断线引起变压器差动保护误动
传统的电磁式变压器差动继电器的CT回路接线,首先必须通过对CT接线形式的选择进行外部的“相位补偿”,消除变压器接线组别不同造成的高、低压侧电流相位差和差动保护回路不平衡电流。例如常用的Y/dll接线的变压器,由于三角形侧电流的相位比星形侧同一相电流超前30°,必须将变压器星形侧的CT二次侧接成三角形,而三角形侧的CT接成星形,从而将流入差动继电器的CT二次电流相位校正过来。微机型变压器差动保护根据Y,d变换产生的相位移进行内部“相位补偿”计算,例如,为了接线简单,任意接线组别的变压器其CT二次回路都可以采用全星型连接,其相位补偿可以由保护装置内部的软件来实现,而无须像传统的差动保护那样依靠CT接线方式的选择进行外部的“相位补偿”,这种软件的补偿是利用对称分量法进行“矩阵变换”计算得到的。
变压器差动保护的动作电流的整定,一般要考虑以下几个方面的因素及影响:(1)应躲过当变压器空投及外部故障后电压恢复时的变压器励磁涌流的影响,整定公式Idz=KkIe,Kk可靠系数取1.3~1.5,Ie额定电流;(2)应躲过变压器外部故障时在变压器保护中所引起的最大不平衡电流,整定公式Idz=KkIbp,Kk,可靠系数取1.3,Ibp为不平衡电流;(3)应躲变压器差动保护二次回路线时在差动回路中引起的差动电流的影响,整定公式Idz=KkIeoKk为可靠系数,取1.3,Ie为额定电流。以上3种最大值作为变压器的差动动作电流。电磁型变压器差动保护的动作电流整定考虑了第3条,差动回路CT二次回路断线不会误动,晶体管变压器差动保护和微机变压器差动保护的动作电流一般按变压器额定电流的25%~50%考虑,其保护功能用逻辑来实现,比电磁型变压器差动保护快速、灵敏,且动作电流整定得较小。因此在差动回路的CT二次回断线时,如不采取措施,变压器差动保护会误动作。
CT断线最明显的特征是电流下降,在微机型保护中,只要有合理的判断,就不难解决电流互感器二次回路断线时变压器差动保护误动问题。若某侧电流同时满足下列条件认为是CT断线,只有一相或两相电流为零,其它两相或一相电流与起动电流相等,故障相电流的突变量(下降)超过所给的定值,可判断出CT断线。判别出CT断线后,可以在正常负载时闭锁差动,防止变压器差动保护误动作。
2.3 区外故障引起的差动保护误动
区外故障产生差流主要有下面几种原因:(1)变压器正常运行时各侧的额定电流不一致;(2)当变压器一侧带有分节头调节时,电压发生变化产生不平衡电流;(3)电流互感器(TA)本身存在误差;(4)TA不同型号引起的误差:(5)谐波和非周期分量对不同型号TA的影响:(6)不同类型的负载致使各侧电流相位发生偏差。
基于上述因素的考虑,在整定变压器的差动定值时要排除这些不平衡分量的综合影响。其动作电流一般在(0.3~0.5)In(In为额定电流)。当变压器发生严重的区外 故障,两侧会产生更大的差流,在下列情况下可能超过差动门槛值:(1)短路电流较大,各侧互感器型号不一致,特别是短路电流大的一侧使用P级互感器(不带暂态特性的电流互感器),而短路电流小的一侧使用TPY级互感器(带暂态特性的电流互感器);(2)短路电流中含有较大的非周期分量和谐波分量:(3)故障切除瞬间,由于剩磁的存在,电压恢复时产生大小不等的恢复性涌流;(4)特殊性负载如容性或感性负载存在,致使各侧短路电流相位发生偏移,产生更大的差流。
多次事故表明,变压器发生区外故障,在发生区外故障的时间段,差动保护一般不会误动,在切除故障的瞬差动保护反而误动,根据对几例典型事故的录波分析,发现保护动作点均落在差动比例制动曲线(两段折线比例制动)无制动特性的水平线上第一拐点以内,即差流大于门槛值,制动电流小于第一拐点电流(拐点电流为(0.9~1.0)In),如图4所示C点(图中Id为差动电流,Ir为制动电流;K1,K2,K3为比例系数)。
对现场录波数据分析和动模试验仿真,均可知此种情况下保护动作存在必然性。故障时,短路电流比较大,含有非周期分量和谐波分量,故障期间产生的不平衡分量较大(可能大于差动动作门槛值),但制动电流较大,动作点落在非动作区,如图4所示B点。在切除故障的瞬间,两侧TA的暂态分量衰减程度不一样,此时差流仍然比较大,而制动电流减小,动作点移动到如图4所示的C点,差动保护误动,按此原理设置的比例制动曲线保护不能制动。
为了防止区外故障差动保护误动,可以从以下几个方面着手:
(1)在进行继电保护定值计算时。保护定值不宜过低,一般整定在0.4In或以上;
(2)两侧TA尽量选用同一型号的,可以同为P级或TPY级互感器,使用TPY级互感器效果较好:
(3)提高硬件的采样精度和计算准确度:
(4)设置先进的新原理保护。
由于我国多数地方的电力系统站用TA均采用的是P级,有的地方在高压侧采用TPY级,低压侧采用P级,严重影响两侧TA的不平衡性。保护定值要求整定在(0.3~0.5)In极个别地方整定在0.2In,定值门槛太低。
随着计算机水平的发展,保护装置硬件水平不断的提高,多种原理的综合运用,采样精度和计算准确度也在提高。除此之外,也可以从编制的软件着手,来防止区外故障切除时对保护造成的误动。
3 结束语
近年来,微机保护装置的应用日益广泛,但是变压器主保护的误动原因仍是多方面的。本文仅给找不到变压器差动保护误动原因的技术人员提供一些思路,我们只有在安装调试过程中把每一环节工作做细,按照检验条例和有关规程规定,严把整组试验关,积极采取相应措施,是可以提高变压器差动保护的可靠性的,或者完全可以避免主变在运行中差动保护的误动作。