【摘 要】
:
本文提出了一种基于多普勒微波雷达的发音动作检测与命令词识别方法.该方法利用微波雷达的多普勒特性检测发音过程中面部肌肉的微小变化,实现不依赖语音声学信号的命令词识别
【机 构】
:
中国科学技术大学 语音与语言信息处理国家工程实验室,合肥,230027
论文部分内容阅读
本文提出了一种基于多普勒微波雷达的发音动作检测与命令词识别方法.该方法利用微波雷达的多普勒特性检测发音过程中面部肌肉的微小变化,实现不依赖语音声学信号的命令词识别.本文首先设计实现了一个基于多普勒微波雷达的发音动作检测系统,并基于此系统构建了一个包含2个说话人的命令词识别数据库.然后,本文研究了基于支持向量机和卷积神经网络模型的雷达数据分类方法,并对比了不同模型和特征组合在单话者建模和多话者建模情况下的命令词识别性能.实验结果表明,本文设计的数据采集系统可以有效检测发音动作,所构建的卷积神经网络分类器可以取得90%以上的命令词识别准确率.
其他文献
推荐系统本质上是一种信息检索工具,它检索出有用信息并推荐给特定的用户.组推荐系统通过不同的融合策略融合群组偏好,支持群组用户访问当前的热门兴趣点.传统组推荐模型没有
在不确定数据流聚类算法的研究中,位置不确定性是一种新的不确定数据类型.已有的不确定数据模型不能很好地描述和处理位置不确定数据.鉴于此,在提出基于联系数的位置不确定数
随着自然语言处理(NLP)的不断发展,深度学习被逐渐运用于文本分类中.然而大多数算法都未有效利用训练文本的实例信息,导致文本特征提取不全面.为了有效利用对象的实例信息,本
局部离群点检测是近年来数据挖掘领域的热点问题之一.针对交通数据去噪问题,提出一种基于局部估计密度的局部离群点检测算法,算法使用核密度估计方法计算每个数据对象的密度
预测任务的资源使用状况是提高云平台资源使用率的重要手段之一.然而云计算平台资源使用的动态性、不确定性和突变性使得预测效果有限.为了提高云平台任务的资源使用率预测性
针对卷积神经网络存在随着网络深度增加导致优化困难,识别正确率降低、泛化性能差等问题,在Res Net(残差网络)基础上,提出了一种基于softmax全连接自适应门控网络融合模型.该方法在隐层网络深度达到一定层数后,设置多种卷积核尺寸作为独立网络输出,通过softmax全连接门控网络输出各模型选择概率,融合多种卷积尺寸残差网输出作为模型最终输出.实验表明,本文提出的融合残差网络模型更适合于多类别、精
针对目前布料与流体交互时出现的流体穿透和布料自碰撞问题,提出一种用于实时模拟布料与流体交互的方法.首先,根据布料的网格拓扑结构引入拉伸约束和弯曲约束对弯曲力以及拉
电子商务中大量评论数据蕴含着丰富的信息,该信息有助于解决个性化推荐系统存在的数据稀疏问题.为了充分挖掘评论数据蕴含的价值,提高商品推荐的准确率,本文提出了基于耦合CN
有遮挡人脸图像还原是指通过对遮挡区域的图像进行估计,尽可能使用语义上合理的内容来填补.现有的人脸图像还原算法大多使用预先定义的掩模来模拟遮挡,并未考虑真实场景下的遮挡(如眼镜、口罩等)大小和位置对图像还原的影响.提出了一种基于深度卷积生成对抗网络的遮挡感知人脸还原方法,通过学习最接近遮挡图像的编码,来推断缺失的内容,并在生成的过程中自动检测出遮挡的区域,此外,为了减少面部信息丢失,保证恢复后的人脸
图像阈值分割是将灰度图像转换为二值图像的常用图像分割方式.经典多阈值Otsu算法对复杂图像进行分割取得了很好的效果,但是其采用穷举方法来寻找最优阈值是非常耗时的.针对这一问题,本文提出了一种基于细胞膜和自适应步长萤火虫混合优化算法的多阈值Otsu图像分割方法.利用萤火虫算法的启发式搜索来寻找图像分割的最优阈值很好地降低了算法的时间复杂度,并且在萤火虫算法中混合细胞膜算法很好地解决了萤火虫算法的"早