论文部分内容阅读
由于样本数常小于样本维数,传统的典型相关分析方法CCA(canonical correlation analysis)会产生小样本问题。为了解决这类问题,一种新的有监督特征抽取方法——二维典型相关分析2DCCA被提出。与传统CCA方法把二维图像矩阵拉成一维向量不同,2DCCA直接从图像矩阵中抽取特征,该方法有效地解决了小样本问题。但是在单特征下,CCA的类标编码对识别率会产生影响,在一维情况下,传统的类标编码使得CCA等价于LDA,从而限制了CCA抽取更多有效的识别特征。证明了在传统的类标编码时,2