论文部分内容阅读
针对实时、多源、海量数据条件下用户所需信息的获取问题,提出一种面向对象的、基于多智能体协同的多源信息搜索模型,以对象为中心,在反馈循环搜索的过程中,完善对象描述模型并实现多源数据中关联对象信息的获取,提高多源信息获取的全面性和准确性。设计基于Q学习的协同控制算法,针对马尔科夫对象与非马尔科夫对象给出相应的决策方法。实验结果表明,该协同控制算法比概率转移矩阵及概率统计算法具有更好的信息获取能力。