论文部分内容阅读
多尺度科学在数据挖掘领域的研究多见于图像和空间数据挖掘,对一般数据的多尺度特性研究较少。传统聚类算法只在单一尺度上进行,无法充分挖掘蕴藏在数据中的知识。引入粒计算思想,进行普适的多尺度聚类方法研究,对数据进行多层次、多角度分析,实现一次挖掘,多次应用。首先,介绍粒计算相关知识;然后,提出多尺度聚类尺度上推算法UAMC(upscaling algorithm of multi-scale clustering),以簇为粒子,簇心为粒子特征进行尺度转换,利用斑块模型得到大尺度知识,避免二次挖掘带来的资源