论文部分内容阅读
The Miyun area of Beijing is located in the northern part of the North China Craton(NCC)and includes a variety of Archean granitoids and metamorphic rocks.Magmatic domains in zircon from a tonalite reveal Early Neoarchean(2752±7 Ma) ages show a small range in ε_(Hf)(t) from 3.1 to 7.4and t_(DM1)(Hf) from 2742 to 2823 Ma,similar to their U-Pb ages,indicating derivation from a depleted mantle source only a short time prior to crystallization.SHRIMP zircon ages of granite,gneiss,amphibolite and hornblendite in the Miyun area reveal restricted emplacement ages from 2594 to2496 Ma.They also record metamorphic events at ca.2.50 Ga,2.44 Ga and 1.82 Ga,showing a similar evolutionary history to the widely distributed Late Neoarchean rocks in the NCC.Positive ε_(Hf)(t) values of 1.5 to 5.9,with model ages younger than 3.0 Ga for magmatic zircon domains from these Late Neoarchean intrusive rocks indicate that they are predominantly derived from juvenile crustal sources and suggest that significant crustal growth occurred in the northern NCC during the Neoarchean.Late Paleoproterozoic metamorphism developed widely in the NCC,not only in the Trans-North China Orogen,but also in areas of Eastern and Western Blocks,which suggest that the late Paleoproterozoic was the assembly of different micro-continents,which resulted in the final consolidation to form the NCC,and related to the development of the Paleo-Mesoproterozoic Columbia or Nuna supercontinent.
The Miyun area of Beijing is located in the northern part of the North China Craton (NCC) and includes a variety of Archean granitoids and metamorphic rocks. Magmatic domains in zircon from a tonalite reveal Early Neoarchean (2752 ± 7 Ma) ages show a small range in ε_ (Hf) (t) from 3.1 to 7.4 and t_ (DM1) (Hf) from 2742 to 2823 Ma, similar to their U-Pb ages, indicating derivation from a depleted mantle source only a short time prior to crystallization. SHRIMP zircon ages of granite, gneiss, amphibolite and hornblendite in the Miyun area reveal restricted emplacement ages from 2594 to 2496 Ma. They also record metamorphic events at ca. 2.50 Ga, 2.44 Ga and 1.82 Ga, showing a similar evolutionary history to the widely distributed Late Neoarchean rocks in the NCC. Positive ε_ (Hf) (t) values of 1.5 to 5.9 with model ages younger than 3.0 Ga for magmatic zircon domains from these Late Neoarchean intrusive rocks indicate that they are predominantly derived from juvenile crustal sources and suggest that signifi cant crustal growth occurred in the northern NCC during the Neoarchean. Late Paleoproterozoic metamorphism developed widely in the NCC, not only in the Trans-North China Orogen, but also in areas of Eastern and Western Blocks, which suggest that the late Paleoproterozoic was the assembly of different micro-continents, which resulted in the final consolidation to form the NCC, and related to the development of the Paleo-Mesoproterozoic Columbia or Nuna supercontinent.