论文部分内容阅读
为快速生成高质量混淆网络,该文提出一种最大后验弧主导的快速生成算法。它只需遍历一遍Lattice,具有线性时间复杂度。采用K-L散度(Kullback-Leibler Divergence,KLD)来度量弧标号之间的发音相似性,改善了混淆网络生成中弧对齐的准确性。实验结果显示,所提算法在生成速度上和Xue的快速算法是可比的,而生成质量更好。通过采用KLD作为弧标号相似性测度,生成混淆网络的质量得到了进一步提高。