基于平面变换的高精度相机标定方法

来源 :北京航空航天大学学报 | 被引量 : 0次 | 上传用户:dephibase
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对传统方法没有考虑到透视偏差的存在,通常提取椭圆圆心作为真实物理圆心投影点造成相机标定误差的问题,提出了一种基于平面变换的高精度相机标定方法。提取标定板内外边框上的角点,对标定板进行平面变换,将标记点由椭圆投影成近似的标准圆;利用图像矩提取标准圆圆心的坐标,投影回原标定板平面,得到标记点实际圆心的像素坐标;根据圆形标记点实际圆心的坐标,利用张正友标定法完成相机标定。实验结果表明,与传统方法相比,本方法将相机标定的误差降低了66.169%,有效提高了相机标定的精度。
其他文献
视觉注意力模型被应用于自动定位细粒度图片的局部区域以捕捉图片中有辨识度的特征并进行图片的分类的任务,但是模型每次的输入图片尺寸是固定的而辨识度的特征区域大小是不确定的,因此模型不能够准确捕捉图片的全部特征造成分类准确率的下降。本文提出一种可变尺寸循环注意力模型,与之前的固定输入图片尺寸的循环注意力网络相比,模型通过优化注意力策略和尺寸生成策略,能够自主地学习下次输入图片的位置和尺寸,减少总输入图片
期刊
随着深度学习相关技术在计算机视觉、自然语言处理等领域的快速发展和广泛应用,深度学习模型逐渐成为了高价值攻击目标,其固有的易受噪声干扰的安全隐患也逐步暴露出来,如基于生成对抗网络(GAN)或机器学习的方式,通过添加少量特定的噪声来生成对抗样本,导致现有的深度学习模型失效。目前的对抗攻击技术一般针对特定深度学习模型,使用海量算力搜索特定扰动噪声,无论是GAN还是传统机器学习方式,其计算效率和对抗攻击成
期刊
古印章文本因图像退化与超多分类等特点导致识别难度大,部分字符的标注数据不足造成基于深度学习的模型识别准确率不高,泛化能力差。针对上述问题,提出基于深度残差网络(ResNet)和迁移学习的古印章文本识别方法。使用深度残差网络作为特征提取网络,利用人工合成字符样本作为源域进行预训练。将自建古印章文本识别数据集作为目标域,引入迁移学习并结合数据增强和标签平滑策略建立分类模型。最后,对比多种网络下的识别结
期刊
针对多源点云配准存在噪声、部分重叠、不同模型的配准参数难确定等问题,提出一种基于贡献因子的改进TrICP算法。首先, 使用改进体素降采样以及随机采样对点云进行降采样。然后利用改进算法的贡献因子来保留对配准贡献度更大的点对,使用奇异值分解法(SVD)对变换矩阵求解,同时计算距离曲线上的点经过原点的斜率来自动计算重叠度,实现点云的全自动配准。使用斯坦福大学的Bunny点云以及”茂县624”滑坡现场点云
期刊
针对现有神经网络图像修复方法在移动终端设备上部署存在效果差、响应时间长、高能耗的问题,提出了一种面向边-端协同的并行解码器图像修复方法及计算卸载策略。首先,结合移动边缘计算(MEC)技术边-端协同的特性,提出一种面向边-端协同的并行解码器门控卷积图像修复网络ETG-Net(Edge- Terminal Gated Convolution Network)。其次,通过边-端共享权值的方式,提升图像修
期刊
针对现有立体匹配深度学习模型中常采用线性插值进行代价体上采样,而无法充分利用邻域纹理信息的问题,提出了一个自适应上采样模块。该模块首先为高分辨率输出中每一个像素位置自适应学习采样的权重窗口,然后采用最近邻方法将低分辨率输入上采样后在对应位置使用学习到的权重卷积得到最终对应高分辨输出的值。该模块具有以下三个特点:1.大感受野,通过堆叠的空洞卷积以及多尺度窗口提高像素的邻域纹理感知能力;2.轻量级,与
期刊
针对人脸追踪过程中,基于目标色彩特征的CamShift(Continuously Adaptive Mean-Shift)算法受类肤色背景干扰所导致的搜索框偏移及尺寸异常问题,提出了一种结合肤色分割及追踪监测机制的人脸追踪改进算法。首先,在YCbCr色彩空间的Cb、Cr分量内采用非参数肤色分割模型及SVM(Support Vector Machines)构建特定于当前视频序列的联合肤色分割模型,以
期刊
针对以黑色素瘤为代表的皮肤癌分类任务存在数据集各类样本数量、权重不均衡,且现有的对抗生成网络生成的皮肤癌样本图像质量较差导致临床诊断时难以分辨等问题,提出了一种基于自注意力的样式生成对抗网络(Self-Attention-StyleGAN)与SE-ResNeXt-50相结合的皮肤癌图像样本生成与分类框架。该框架在样式生成对抗网络(StyleGAN)的基础上引入了自注意力机制,对生成器的样式控制和噪
期刊
基于邻域的离群点检测算法中,参数的选择与确定是一个重要的问题,不合理的参数选择导致算法的性能显著下降。为减少参数对于离群点检测的影响,提出了一种基于马尔科夫随机游走的两阶段离群检测算法,可以在不影响算法效率的基础上,有效降低参数对检测结果的影响。该算法首先采用均匀采样策略生成一系列三角剖分图,并引入移除规则得到节点的拓扑结构,从而获得由节点连通性定义的转移概率矩阵,有效减少了算法的计算量和运行时间
期刊
双目图像第二视点为图像超分辨率重建网络提供更多的细节信息,为更充分利用双目图像的互补信息,提出一种基于深度学习的回环结构与视差注意力模块(PAM)相结合的双目图像超分辨率重建网络。首先,该网络特征提取模块由MJR-ASPP+构成的回环结构与扩张残差块交替级联而成,回环结构中混合跳跃式残差(MJR)能聚合网络中不同深度的信息,改进空洞空间金字塔池化块(ASPP+)用于提取图像多尺度特征,扩张残差块融
期刊