论文部分内容阅读
[摘 要]计算机视觉技术发展的重要性不言而喻,通过分析其发展历程,可以认为计算机视觉研究的基本理论框架为:深度重建框架、基于知识的视觉框架、主动视觉框架以及视觉集成框架。三维表示是计算机视觉重要研究内容。
[关键词]计算机视觉 视觉框架 三维表示
中图分类号:TP338.6 文献标识码:A 文章编号:1009-914X(2015)47-0133-01
1 计算机数字视觉技术研究的地位
长期以来,人类持续不断地试图从多个角度去了解生物视觉和神经系统的奥秘,这些努力的阶段性理论研究成果已经在人们的生产生活中发挥了不可估量的作用。计算机视觉(CV)研究的主要内容是通过计算机分析景物的二维图像,从中获得三维世界的结构和属性等信息,进而完成诸如在复杂的环境中识别和导航等任务。计算机视觉研究的重要性是不言而喻的,会产生深远的经济和科学的影响。
20世纪下半叶以来,很多研究者都曾试图通过视觉传感器和计算机软硬件模拟出人类对三维世界图像的采集、处理、分析和学习能力,以便使计算机和机器人系统具有智能化的视觉功能。今天,数字图像相关的软硬件技术在人们生活中的广泛使用,数字图像已经成为当代社会信息来源的重要构成因素,各种图像处理与分析的需求和应用也不断促使数字视觉技术的革新。数字视觉技术的应用十分广泛,如数字图像检索管理、医学影像分析、智能安检、人机交互等。
数字视觉技术是人工智能技术的重要组成部分,也是当今计算机科学研究的前沿领域,经过近年的不断发展。已逐步形成一套以数字信号处理技术、计算机图形图像、信息论和语义学相互结合的综合性技术,并具有较强的边缘性和学科交叉性。
2 计算机数字视觉技术研究的核心问题
视觉问题复杂性的本质在于相对声音等物理信号的描述,视觉信号充满了非常丰富的信息,描述起来也更加困难。如何攻克图像信息提取过程中的各种难题一直是当今计算机图像学研究的热点问题,而且在科学家们还未完全破译生物视觉系统的奥秘的前提下,大多数问题只能采用逆向推导机制,依据已知或假设的关联将视觉系统的输入数字图像和输出语义描述对应起来。基于概率论和数理统计的数学模型是最适合解决这类逆推问题的工具,这也是目前領域普遍采用各种统计模型和机器学习算法的本质原因。
物体的三维表示是计算机视觉研究的一个关键问题。八元树(octree)表示法是一种紧凑、简洁的物体三维表示法,近年来这种表示法被广泛地应用到计算机视觉的研究领域。广义八元树表示法的优点是不受视图个数的限制,通过增加观察方向可以计算出更加精确的物体三维表示。主要缺点是需要进行多次坐标变换,在计算机上实现时需要研究相应的离散技术。线性八元树(linearoctree)是较八元树更加简洁的表示形式。
3 计算机视觉技术结构及其研究基本框架
计算机视觉技术内在的逆推机制决定了其在系统开发时必须将原始图像数据与其蕴含的知识之间的语义鸿沟加以弥补,在满足特定应用需求的前提下进行合理的图像内容简化和假设,形成目前普遍使用的计算机视觉系统结构:即图像数据层、图像特征描述层及图像知识获取层。由于各种图像特征都有其优点及不足之处目前趋势是结合不同种类的特征对图像内容进行综合表述,以建立较为可靠的图像信息模型,比如利用时空体数据结构 对人体行为等视频内容进行描述。
计算机视觉技术的研究主要围绕着四个基本理论框架:以Marr视觉计算理论为核心的深度重建框架;以感知特征群集为主线的基于知识的视觉框架;以“感知一动作”为基础的主动视觉理论框架;以综合集成理论为指导的视觉集成框架。其中,视觉集成理论框架是计算机视觉研究中一个较新的理论框架,并越来越多地受到cv研究者的关注。视觉集成理论的研究内容大致可以分为三个方面,第一方面的研究内容是关于视觉信息与其它类型信息的集成。第二方面的研究内容是关于视觉表示和视觉模型的集成。视觉表示方法主要分为三类:图像表示、表面表示、物体表示。视觉模型王要分为图像模型、结构和形状模型、运动和动态模型、不确定性模型。集成的视觉系统应该能够充分利用这些方法的优点。第二方面的研究内容是系统的集成。
4 计算机视觉的发展历程及其趋势
一般认为,计算机视觉技术研究始于20世纪50年代中期,当时的努力主要集中在二维景物图像的分析。区别在于,图像处理的目的是通过处理原始图像得到在某一方面更有利的新图像。模式识别关心的则是将一些模式归入预先定义的有限类别中,主要研究的是二维模式。而计算机视觉主要考虑的是对三维世界的描述和理解。
一般来说,比较一致的观点认为,计算机视觉的研究起始于1965年Rboesrt开创性的工作。Rboert对“积木世界”研究取得的成功激起了人们很高的期望。
60年代末70年代初期,计算机视觉研究领域的很多工作是关于低层视觉处理,从图像中提取重要的强度变化信息——边缘检测。然而,人们很快就认识到很多重要的物体属性无法只通过分析图像的灰度变化得出。到了70年代初期,问题更加明朗化,低层视觉处理无法从单幅图像中普遍地获取对景物的有用描述,计算机视觉的研究领域普遍地发生危机。为了摆脱困境,计算机视觉迫切地需要有一个统一的理论框架作指导。70年代中期到80年代初期,计算机视觉的研究领域首次出现了一个理论框架:视觉计算理论框架,将视觉系统从概念上分成几个独立的模块。80年代后期,计算机视觉的研究领域出现了主动视觉(`vtievsiino)的理论框架。
近年的研究结果表明,单一的图像特征描述机制,无论是对底层像素级特征的描述还是顶层语义特征的描述。都仅能在有限范围内对图像的内容进行建模。巧妙融合多种图像特征因此成为近年图像信息描述方面的主要趋势,近年来,计算机视觉的另一个理论框架——视觉的集成方法越来越多地受到重视。一个重要的趋势是用于识别真实世界中较为复杂的图像内容的技术,适合描述真实场景的各种特征不断得到发展。随着目前互联网络技术的不断发展,另一个值得重视的趋势是计算机图像技术与互联网技术、社交媒体技术等其它计算机技术的融合。
6 结语
计算机视觉识别技术虽然是一门新兴学科。但应用前景十分广阔,对其技术的有效性、易用性、实时性及稳定性能等方面有着较高的要求。因此。其技术面临着前所未有的机遇和挑战,该领域的发展亦有过激烈的争论和反思。但是,不可否认的是,计算机视觉技术研究在许多应用领域的应用前景都是广阔的、不可估量的。
参考文献
[1] 马玉真,陶立英,王新華.计算机视觉技术的应用[J].试验技术与试验机.2006(01)
[2] 潘春洪,张彩霞.计算机视觉简述[J].自动化博览.2005(05)
[3] 孙瑾,顾宏斌.计算机视觉系统框架结构研究[J].计算机工程与应用. 2004(12)
[4] 王天珍.计算机视觉研究进展[J].武汉汽车工业大学学报.1998(01)
[5] 王天珍.计算机视觉研究[J].空军雷达学院学报.1999(01)
[6] 刘虹.计算机视觉系统的发展和应用综述[J].云南广播电视大学学报.1999(04)
[关键词]计算机视觉 视觉框架 三维表示
中图分类号:TP338.6 文献标识码:A 文章编号:1009-914X(2015)47-0133-01
1 计算机数字视觉技术研究的地位
长期以来,人类持续不断地试图从多个角度去了解生物视觉和神经系统的奥秘,这些努力的阶段性理论研究成果已经在人们的生产生活中发挥了不可估量的作用。计算机视觉(CV)研究的主要内容是通过计算机分析景物的二维图像,从中获得三维世界的结构和属性等信息,进而完成诸如在复杂的环境中识别和导航等任务。计算机视觉研究的重要性是不言而喻的,会产生深远的经济和科学的影响。
20世纪下半叶以来,很多研究者都曾试图通过视觉传感器和计算机软硬件模拟出人类对三维世界图像的采集、处理、分析和学习能力,以便使计算机和机器人系统具有智能化的视觉功能。今天,数字图像相关的软硬件技术在人们生活中的广泛使用,数字图像已经成为当代社会信息来源的重要构成因素,各种图像处理与分析的需求和应用也不断促使数字视觉技术的革新。数字视觉技术的应用十分广泛,如数字图像检索管理、医学影像分析、智能安检、人机交互等。
数字视觉技术是人工智能技术的重要组成部分,也是当今计算机科学研究的前沿领域,经过近年的不断发展。已逐步形成一套以数字信号处理技术、计算机图形图像、信息论和语义学相互结合的综合性技术,并具有较强的边缘性和学科交叉性。
2 计算机数字视觉技术研究的核心问题
视觉问题复杂性的本质在于相对声音等物理信号的描述,视觉信号充满了非常丰富的信息,描述起来也更加困难。如何攻克图像信息提取过程中的各种难题一直是当今计算机图像学研究的热点问题,而且在科学家们还未完全破译生物视觉系统的奥秘的前提下,大多数问题只能采用逆向推导机制,依据已知或假设的关联将视觉系统的输入数字图像和输出语义描述对应起来。基于概率论和数理统计的数学模型是最适合解决这类逆推问题的工具,这也是目前領域普遍采用各种统计模型和机器学习算法的本质原因。
物体的三维表示是计算机视觉研究的一个关键问题。八元树(octree)表示法是一种紧凑、简洁的物体三维表示法,近年来这种表示法被广泛地应用到计算机视觉的研究领域。广义八元树表示法的优点是不受视图个数的限制,通过增加观察方向可以计算出更加精确的物体三维表示。主要缺点是需要进行多次坐标变换,在计算机上实现时需要研究相应的离散技术。线性八元树(linearoctree)是较八元树更加简洁的表示形式。
3 计算机视觉技术结构及其研究基本框架
计算机视觉技术内在的逆推机制决定了其在系统开发时必须将原始图像数据与其蕴含的知识之间的语义鸿沟加以弥补,在满足特定应用需求的前提下进行合理的图像内容简化和假设,形成目前普遍使用的计算机视觉系统结构:即图像数据层、图像特征描述层及图像知识获取层。由于各种图像特征都有其优点及不足之处目前趋势是结合不同种类的特征对图像内容进行综合表述,以建立较为可靠的图像信息模型,比如利用时空体数据结构 对人体行为等视频内容进行描述。
计算机视觉技术的研究主要围绕着四个基本理论框架:以Marr视觉计算理论为核心的深度重建框架;以感知特征群集为主线的基于知识的视觉框架;以“感知一动作”为基础的主动视觉理论框架;以综合集成理论为指导的视觉集成框架。其中,视觉集成理论框架是计算机视觉研究中一个较新的理论框架,并越来越多地受到cv研究者的关注。视觉集成理论的研究内容大致可以分为三个方面,第一方面的研究内容是关于视觉信息与其它类型信息的集成。第二方面的研究内容是关于视觉表示和视觉模型的集成。视觉表示方法主要分为三类:图像表示、表面表示、物体表示。视觉模型王要分为图像模型、结构和形状模型、运动和动态模型、不确定性模型。集成的视觉系统应该能够充分利用这些方法的优点。第二方面的研究内容是系统的集成。
4 计算机视觉的发展历程及其趋势
一般认为,计算机视觉技术研究始于20世纪50年代中期,当时的努力主要集中在二维景物图像的分析。区别在于,图像处理的目的是通过处理原始图像得到在某一方面更有利的新图像。模式识别关心的则是将一些模式归入预先定义的有限类别中,主要研究的是二维模式。而计算机视觉主要考虑的是对三维世界的描述和理解。
一般来说,比较一致的观点认为,计算机视觉的研究起始于1965年Rboesrt开创性的工作。Rboert对“积木世界”研究取得的成功激起了人们很高的期望。
60年代末70年代初期,计算机视觉研究领域的很多工作是关于低层视觉处理,从图像中提取重要的强度变化信息——边缘检测。然而,人们很快就认识到很多重要的物体属性无法只通过分析图像的灰度变化得出。到了70年代初期,问题更加明朗化,低层视觉处理无法从单幅图像中普遍地获取对景物的有用描述,计算机视觉的研究领域普遍地发生危机。为了摆脱困境,计算机视觉迫切地需要有一个统一的理论框架作指导。70年代中期到80年代初期,计算机视觉的研究领域首次出现了一个理论框架:视觉计算理论框架,将视觉系统从概念上分成几个独立的模块。80年代后期,计算机视觉的研究领域出现了主动视觉(`vtievsiino)的理论框架。
近年的研究结果表明,单一的图像特征描述机制,无论是对底层像素级特征的描述还是顶层语义特征的描述。都仅能在有限范围内对图像的内容进行建模。巧妙融合多种图像特征因此成为近年图像信息描述方面的主要趋势,近年来,计算机视觉的另一个理论框架——视觉的集成方法越来越多地受到重视。一个重要的趋势是用于识别真实世界中较为复杂的图像内容的技术,适合描述真实场景的各种特征不断得到发展。随着目前互联网络技术的不断发展,另一个值得重视的趋势是计算机图像技术与互联网技术、社交媒体技术等其它计算机技术的融合。
6 结语
计算机视觉识别技术虽然是一门新兴学科。但应用前景十分广阔,对其技术的有效性、易用性、实时性及稳定性能等方面有着较高的要求。因此。其技术面临着前所未有的机遇和挑战,该领域的发展亦有过激烈的争论和反思。但是,不可否认的是,计算机视觉技术研究在许多应用领域的应用前景都是广阔的、不可估量的。
参考文献
[1] 马玉真,陶立英,王新華.计算机视觉技术的应用[J].试验技术与试验机.2006(01)
[2] 潘春洪,张彩霞.计算机视觉简述[J].自动化博览.2005(05)
[3] 孙瑾,顾宏斌.计算机视觉系统框架结构研究[J].计算机工程与应用. 2004(12)
[4] 王天珍.计算机视觉研究进展[J].武汉汽车工业大学学报.1998(01)
[5] 王天珍.计算机视觉研究[J].空军雷达学院学报.1999(01)
[6] 刘虹.计算机视觉系统的发展和应用综述[J].云南广播电视大学学报.1999(04)