论文部分内容阅读
为实现家猪图像识别并提高识别准确率,提出一种基于迁移学习的家猪图像识别方法。首先对现有数据集进行数据增强,然后迁移VGG16模型并对其进行微调,从而更好地提取图像特征并缩短网络训练时间。采用自归一化神经网络解决了梯度消失和梯度爆炸问题,在网络构造时使用全局平均池化代替全连接层,以达到降低模型过拟合的效果。实验对比结果表明,该方法分类效果较好,准确率达到了84%,召回率和F1值分别提升至0.8、0.82,各项指标相比基础模型均有所提升。