论文部分内容阅读
针对传统K-means算法存在的缺陷,引进人工鱼群算法,提出了一种基于改进鱼群和K-means的混合聚类算法。聚类样本中心点初始化时,人工鱼各维参数随机选择在对应属性两个极值之间,同时为了降低计算复杂度,提高收敛效率,寻找全局最优,首先对随机选取的一小部分人工鱼进行K-means操作,然后对全体人工鱼的追尾算子引入粒子群策略,引导其学习,模拟人工鱼的行为。通过Matlab仿真实现算法,在费雪鸢尾花卉数据集和葡萄酒质量数据集进行了实验,算法的有效性和可行性得到了验证。