基于混合样本自动数据增强技术的半监督学习方法

来源 :计算机科学 | 被引量 : 0次 | 上传用户:sunray_redtide
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
基于一致性的半监督学习方法通常使用简单的数据增强方法来实现对原始输入和扰动输入的一致性预测.在有标签数据的比例较低的情况下,该方法的效果难以得到保证.将监督学习中一些先进的数据增强方法扩展到半监督学习环境中,是解决该问题的思路之一.基于一致性的半监督学习方法MixMatch,提出了基于混合样本自动数据增强技术的半监督学习方法AutoMixMatch,在数据增强阶段采用自动数据增强技术,并在样本混合阶段提出了一种混合样本算法,用于提升对无标签样本的利用效果.通过图像分类方面的实验来测试所提方法的性能,在图像分类基准数据集中,所提方法在3种有标签样本比例下的分类效果均优于对比的几个主流半监督分类方法,验证了所提方法的有效性.此外,所提方法在有标签数据占训练数据比例极低(仅为0.05%)的情况下表现更好,在SVHN数据集上的实验结果表明,所提方法的分类错误率比MixMatch低30.17%.
其他文献
近年来,图神经网络在神经性脑疾病诊断中的应用引起了广泛关注.然而,现有研究中使用的图通常只是基于简单的点对点连接,无法反映3个或更多受试者之间的复杂关联,尤其是在多中心数据集中,即由不同医疗机构所使用的不同采集设备和不同受试人群而集成的具有异质性的数据集.为解决医疗影像数据中存在的多中心异质性问题,提出了一种多中心超图数据结构来描述多中心数据之间的关系.这种超图由两种不同的超边构成,一种是描述单个中心内部关系的中心内超边,另一种是描述不同中心之间关系的跨中心超边.另外,还提出了一种超图卷积神经网络来学习节
近年来,基于联合训练的深度聚类方法,如DEC(Deep Embedding Clustering)和DDC(Deep Denoising Clustering)算法,使基于特征提取的图像聚类取得了很多新进展,带来了聚类性能的突破,而且特征提取环节对后续聚类任务有直接影响.但是,这些方法的泛化能力较差,在不同数据集使用不同的网络结构,聚类性能相比分类性能仍有很大的提升空间.为此,文中提出了一种基于自注意力的自监督深度聚类方法(Self-attention Based Self-supervised Deep
会话问题生成(Conversational Question Generation,CQG)不同于根据段落和答案生成单轮问题的问题生成任务,CQG额外考虑由历史问答对构成的会话信息,生成的问题承接会话历史内容,保持较高的一致性.针对这一特性,文中提出了字级别和句级别注意力机制模块来增强对会话历史信息的提取能力,确保当前轮次的问题融合会话历史中每个词和句子的特征,从而生成连贯的、高质量的问题.疑问词的正确性较重要,生成的问题需要和数据集中原始问题对应的答案类型相互匹配,在疑问词预测模块中构造额外的损失函数作
当不完备双论域模糊概率粗糙集获取缺省值时,传统的静态算法更新近似集的时间效率较低,为了解决这个问题,对带标记不完备双论域模糊概率粗糙集的近似集动态更新方法进行了研究.首先,给出了带标记的不完备双论域信息系统的相关定义,运用矩阵提出了带标记的不完备双论域模糊概率粗糙集的模型,证明了其相关定理,给出了一种带标记的不完备双论域模糊概率粗糙集的近似集计算方法,并对其进行了讨论分析.其次,当不完备双论域模糊概率粗糙集获取缺省值时,给出了动态更新其近似集的相关定理,并进行了证明,进而设计了一种带标记的不完备双论域模糊
利用深度学习模型和注意力机制对微博文本进行细粒度情感分类,已成为研究的热点,但是现有注意力机制只考虑单词对单词的影响,对单词本身的多种维度特性(如词义、词性、语义等特征信息)缺乏有效的融合.为了解决这个问题,文中提出了一种双重权重机制WDWM(Word and Dimension Weight Mechanism),并将其与基于解析依赖树的GCN模型相结合,通过选择每条微博中含有关键信息的单词,来抽取单词的重要维度特性,对单词的多种维度特性进行有效融合,从而捕获更加丰富的特征信息.在针对微博细粒度情感分类
白内障是导致视觉损害和致盲的主要眼病,眼前节光学相干断层成像技术(Anterior Segment Optical Coherence Tomography,AS-OCT)具有非接触、高分辨率、检查快速、客观定量化测量等特点,在临床上已经被广泛应用于眼病的诊断.目前缺乏基于眼前节OCT图像的核性白内障分类研究工作,为此提出了一种基于眼前节OCT图像的核性白内障分类算法.首先,利用自适应阈值方法、边缘检测Canny算法和手工校正相结合的方式从眼前节OCT图像中提取晶状体的核性区域;然后,基于图像强度和直方图
多基频估计被广泛应用于音乐结构分析、乐音辅助教育、信息检索等各个领域.为了满足准确识别乐曲中随机和弦的需求,提出了基于生成对抗网络去影像的多基频估计算法.首先将完整音频切分成音符段,提出了一种谐音指纹图提取音符段频谱特征;然后通过卷积神经网络识别谐音指纹图当前的主导基频,将已识别出的主导基频作为干扰下一个基频识别的影像,并通过生成对抗网络去除干扰影像,对已去除干扰影像后的谐音指纹图进行新一轮的多基频估计;最后通过逐级迭代去影像操作实现完整和弦的多基频估计.对随机二音和弦及随机三音和弦组成的钢琴音频数据库进
Q-Learning是目前一种主流的强化学习算法,但其在随机环境中收敛速度不佳,之前的研究针对Speedy Q-Learning存在的过估计问题进行改进,提出了Double Speedy Q-Learning算法.但Double Speedy Q-Learning算法并未考虑随机环境中存在的自循环结构,即代理执行动作时,存在进入当前状态的概率,这将不利于代理在随机环境中学习,从而影响算法的收敛速度.针对Double Speedy Q-Learning中存在的自循环结构,利用逐次超松弛技术对Double S
随着移动互联网的迅猛发展,社交网络平台充斥着大量带有情绪色彩的文本数据,对此类文本中的情绪进行分析研究不仅有助于了解网民的态度和情感,而且对科研机构和政府掌握社会的情绪变化及走向有着重要作用.传统的情感分析主要对情感倾向进行分析,无法精确、多维度地描述出文本的情绪,为了解决这个问题,文中对文本的情绪分析进行研究.首先针对不同领域文本数据集中情绪标签缺乏的问题,提出了一个基于深度学习的可迁移情绪分类的情感分析模型FMRo-BLA,该模型对通用领域文本进行预训练,然后通过基于参数的迁移学习、特征融合和FGM对
全球人口的快速增长和技术进步极大地提高了世界的总发电量,电能消耗预测对于电力系统调度和发电量管理发挥着重要的作用,为了提高电能消耗的预测精度,针对能耗数据的复杂时序特性,文中提出了一种将注意力机制(Attention)放置于双层长短期记忆人工神经网络(Double layer Long Short-Term Memory,DLSTM)中的新颖夹层结构,即A-DLSTM.该网络结构利用夹层中的注意力机制自适应地关注单个时间单元中不同的特征量,通过双层LSTM网络对序列中的时间信息进行抓取,以对序列数据进行预