论文部分内容阅读
采用差示扫描量热仪(DSC)分析了不同镍含量(49.7%,50.0%,50.5%,50.8%,50.9%;原子分数)及加入第三元素(Fe,Cu)的退火态钛镍合金的相变特征。结果表明:当Ni含量在49.7%~50.9%范围内变化时,退火态二元钛镍合金相变只存在B2B19’一阶段相变。加入3%Fe元素后,其退火态相变类型为B19’RB2二阶段相变。加入5%Cu元素后,其退火态相变类型与二元钛镍合金相似,只出现B2B19’一阶段相变。对于二元钛镍合金,其各相变温度随着镍含量的增加近似呈线性降低,相变滞后ΔTp随着镍含量的增加而减小,相变滞后ΔTs随着镍含量的增加先增大再减小。马氏体相变峰宽ΔTM和逆马氏体相变峰宽ΔTA在Ni含量为50.2%~50.4%时取得最小值。退火态二元钛镍合金的相变潜热ΔH随着镍含量的增加而下降。加入3%Fe元素的钛镍合金,其相变潜热ΔH为3~5 J·g-1,相转变更易进行。加入5%Cu元素的钛镍合金的相变潜热ΔH与等原子比二元钛镍合金相当,其相变峰宽ΔTM和ΔTA皆低于二元钛镍合金,相变滞后ΔTs和ΔTp更小,分别可达到8.5和24.3℃,更适合制作高精度、快响应热驱动系统。
In this paper, differential scanning calorimetry (DSC) was used to analyze the properties of annealed Ti-Ni alloy with different contents of nickel (49.7%, 50.0%, 50.5%, 50.8%, 50.9%; atomic fraction) and the third element (Fe, Cu) Of the phase transition features. The results show that when the content of Ni varies from 49.7% to 50.9%, the phase transition of the as-cast binary Ti-Ni alloy has only the first-phase transition B2B19 ’. After adding 3% Fe element, the annealed phase transformation type is B19’RB2 two-phase transformation. After adding 5% Cu element, the annealed phase transformation type is similar to that of binary Ti-Ni alloy, and only B2 B19 ’first-stage phase transition appears. For binary Ti-Ni alloy, the phase transition temperature decreases linearly with the increase of Ni content, and the phase transition delay ΔTp decreases with the increase of Ni content. The phase change hysteresis ΔTs increases first with the increase of Ni content Reduce again. The martensitic transformation peak width ΔTM and the reverse martensitic transformation peak width ΔTA achieved the minimum value when the Ni content was 50.2% ~ 50.4%. The ΔH of the annealed binary Ti-Ni alloy decreases with the increase of Ni content. The addition of 3% Fe element Ti-Ni alloy, the latent heat ΔH 3 ~ 5 J · g-1, the phase transition easier. The phase change latent heat ΔH of titanium-nickel alloy with 5% Cu element is equivalent to that of binary titanium-nickel alloy with atomic ratio, and the peak change phase ΔTM and ΔTA are both lower than that of binary Ti-Ni alloy with smaller hysteresis ΔTs and ΔTp , Respectively, up to 8.5 and 24.3 ℃, more suitable for the production of high-precision, fast response heat-driven system.