论文部分内容阅读
研究了二阶积分器描述的多机器人主—从行星式编队控制问题,提出了将多机器人编队分解为每个机器人对各自具有时变速度的虚拟机器人的跟踪控制,使得每个机器人相对于虚拟机器人的位置与速度跟踪误差收敛为零且彼此不相碰撞,此时编队系统收敛到理想队形.在统一的算法框架下,分别实现了跟随者以领航者为中心的公转运动编队(revolution formation,RF)模式和跟随者与领航者保持期望距离、期望速度的编队(desiredformation,DF)模式.公转运动编队(RF)模式适用于异构多机器人系统的环境探索任务;保持期望距离、期望速度的编队(DF)模式适用于自主水下机器人(AUV)、无人机(UAV)等合作与协调任务.应用李亚普诺夫稳定性理论对控制算法的稳定性进行了分析,并通过计算机仿真验证了该方法的有效性.
The multi-robot master-follower planetary formation control problem described by the second-order integrator is studied. The multi-robot formation is decomposed into each robot’s tracking control of each virtual robot with time-varying velocity, so that each robot relative to the virtual The position and velocity tracking error of the robot converge to zero and do not collide with each other, and the formation system converges to the ideal formation. Under the unified algorithm framework, the revolution formation (RF) mode and the desired distance between the follower and the navigator, the desired formation (DF) mode The revolution mode of formation (RF) mode is suitable for the environmental exploration tasks of heterogeneous multi-robot systems; the desired distance, the desired speed (DF) mode is suitable for the cooperation and coordination task of autonomous underwater vehicles (AUV), UAVs, etc. The stability of the control algorithm is analyzed by the Lyapunov stability theory and verified by computer simulation The effectiveness of this method.